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Introduction

• Dark matter (DM) & neutrino masses                 BSM  

• 2 Higgs doublet model (2HDM) are very popular. For example, 
- In MSSM, 2 Higgs doublets are needed due to holomorphic nature of  the 
superpotential as well as anomaly cancellation. 
- With its additional CP phases, general 2HDM is a prototype model to 
discuss matter-antimatter asymmetry in the universe. 

• Inert Higgs Doublet Model (IHDM) (Deshpande and Ma, ’78) can provide 
dark matter candidate, with a discrete Z2 symmetry imposed. No FCNC at 
tree level too!  

• Scalar singlet as DM: Silveria & Zee (’85), McDonald (’94), Burgess et al (’01), 
He et al (’09). Also based on Z2. 

• However Wilczek and Krauss (’89) had argued that global symmetry (discrete 
or continuous) can be violated by gravitation processes like black hole 
evaporation or wormhole tunneling. Suggested discrete gauge symmetry.  

• We embed the two Higgs doublets into a fundamental representation of  a 
new gauge group SU(2)H. Accidental Z2 symmetry emerges. 



Some Highlights of  G2HDM

• New gauge group SU(2)H ⊗ U(1)X 

• Anomaly free and renormalizable 

• Symmetry breaking of  SU(2)L is triggered or induced by SU(2)H 
breaking 

• One of  the Higgs doublet (H2) can be inert and may play some role 
of  dark matter, whose stability is protected by gauge invariance 

• Accidental Z2 symmetry in which all SM particles are even 

• Unlike Left-Right symmetric models, the complex vector fields  
Wʹ(p,m) are electrically neutral 

• No tree level FCNC in the Higgs couplings 

• etc
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Particle Content

• Three VEVs of  H1, 𝚽H, ΔH 
provide symmetry breaking 
and provide masses

Matter Fields SU(3)C SU(2)L SU(2)H U(1)Y U(1)X

H = (H1 H2)
T 1 2 2 1/2 1
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TABLE I: Matter content and their quantum number assignments in G2HDM.

A. Higgs Potential

The most general Higgs potential invariant under both SU(2)L ⇥ U(1)Y and

SU(2)H ⇥ U(1)X is given by [13]

VT = V (H) + V (�H) + V (�H) + Vmix (H, �H , �H) , (2)

where
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5

• H1 and H2 are grouped 
into a SU(2)H doublet. H1 

is the SM one.

• SU(2)L doublet fermions 
are singlet under SU(2)H  

• SU(2)L singlet fermions are  
grouped with new heavy 
fermions to form SU(2)H 
doublets
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2.1 Parameterization of the IHDM scalar potential

The IHDM [23] is a rather simple extension of the SM Higgs sector. It contains the SM Higgs
doublet H1 and an additional Higgs doublet H2. This model has a Z2 symmetry under which
all the SM fields including H1 are even while H2 is odd under Z2: H2 → −H2. We further
assume that Z2 symmetry is not spontaneously broken i.e. H2 field does not develop VEV.
These doublets can be parameterized as:

H1 =

(
G+

1√
2
(v + h+ iG0)

)

, H2 =

(
H+

1√
2
(S + iA)

)

(2.1)

where G± and G0 are the charged and neutral Goldstone bosons respectively, which will be
absorbed by the W± and Z to acquire their masses.

The scalar potential with an exact Z2 symmetry forbids the mass term −µ2
12(H

†
1H2 +

h.c.) which mixes H1 and H2. Thus it has one fewer term than in THDM, i.e.
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The electroweak gauge symmetry is broken whenH1 doublet gets its VEV: ⟨HT
1 ⟩ = (0, v/

√
2)

while ⟨H2⟩ = 0. This pattern of symmetry breaking ensures unbroken Z2 symmetry and
results in one more CP-even neutral scalar S, one CP-odd neutral scalar A, a pair of charged
scalars H+ and H− in addition to the SM CP-even scalar Higgs h. Note that since h is
the SM Higgs boson, it is Z2 even, while S, A and H± are Z2 odd. Moreover, the exact Z2

symmetry naturally imposes the flavor conservation. Only SM Higgs boson couples to SM
fermions while the inert Higgses S, A and H± do not. The Z2 symmetry also ensures the
stability of the lightest scalar (S or A) that can act as a DM candidate. DM phenomenology
of IHDM had been studied extensively in the literature [50, 51, 53–71, 84].

The above scalar potential in eq. (2.2) has 8 real parameters: 5 λi, 2 µ2
i and the VEV

v. Minimization condition for the scalar potential eliminates µ2
1 in favour of the Higgs mass

and the VEV v is fixed to be 246GeV by the weak gauge boson masses. We are left with 6
independent real parameters. The masses of all the four physical scalars can be written in
terms of µ2
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(IHDM)

mass to the new fermions through SUð2ÞH-invariant
Yukawa couplings; etc.

B. Higgs potential

The Higgs potential invariant under both SUð2ÞL ×
Uð1ÞY and SUð2ÞH ×Uð1ÞX can be decomposed into four
different terms as3

VT ¼ VðHÞþVðΦHÞþVðΔHÞþVmixðH;ΔH;ΦHÞ; ð1Þ
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One can further substitute the component fields of the two doublets H1 and H2 into Eq. (7). However the resulting
expression is tedious and not illuminating, and so will not be shown here.
Before moving to the next subsection on spontaneous symmetry breaking and minimization of the potential, we would

like to make some general comments regarding the G2HDM potential.

5Wenote that the λ0HΦ term in (6)was not included in the originalwork [13]. Also another invariant operator ðΦT
HϵHÞ†ðΦT

HϵHÞ, where ϵ is
the second-rank totally antisymmetric tensor acting on the SUð2ÞH space, can be written down. But this term can be expressed as
ðH†HÞðΦ†

HΦHÞ − ðH†ΦHÞðΦ†
HHÞ, and therefore is not linearly independent.

4We should point out that the λ0H term in VðHÞ was missing in earlier studies [13,14] and VðHÞ contains just three terms (1 mass term
and 2 quartic terms) as compared to 8 terms (3 mass terms and 5 quartic terms) in general 2HDM [1].

3Here, we consider renormalizable terms only. In addition, while the SUð2ÞH multiplication is explicitly shown, the SUð2ÞL
multiplication is implicit and suppressed.
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and finally the mixed term5
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In terms of the component fields of H, ΔH and ΦH, the
mixed potential term VmixðH;ΔH;ΦHÞ reads
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One can further substitute the component fields of the two doublets H1 and H2 into Eq. (7). However the resulting
expression is tedious and not illuminating, and so will not be shown here.
Before moving to the next subsection on spontaneous symmetry breaking and minimization of the potential, we would

like to make some general comments regarding the G2HDM potential.

5Wenote that the λ0HΦ term in (6)was not included in the originalwork [13]. Also another invariant operator ðΦT
HϵHÞ†ðΦT

HϵHÞ, where ϵ is
the second-rank totally antisymmetric tensor acting on the SUð2ÞH space, can be written down. But this term can be expressed as
ðH†HÞðΦ†

HΦHÞ − ðH†ΦHÞðΦ†
HHÞ, and therefore is not linearly independent.

4We should point out that the λ0H term in VðHÞ was missing in earlier studies [13,14] and VðHÞ contains just three terms (1 mass term
and 2 quartic terms) as compared to 8 terms (3 mass terms and 5 quartic terms) in general 2HDM [1].

3Here, we consider renormalizable terms only. In addition, while the SUð2ÞH multiplication is explicitly shown, the SUð2ÞL
multiplication is implicit and suppressed.
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One can further substitute the component fields of the two doublets H1 and H2 into Eq. (7). However the resulting
expression is tedious and not illuminating, and so will not be shown here.
Before moving to the next subsection on spontaneous symmetry breaking and minimization of the potential, we would

like to make some general comments regarding the G2HDM potential.

5Wenote that the λ0HΦ term in (6)was not included in the originalwork [13]. Also another invariant operator ðΦT
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HϵHÞ, where ϵ is
the second-rank totally antisymmetric tensor acting on the SUð2ÞH space, can be written down. But this term can be expressed as
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4We should point out that the λ0H term in VðHÞ was missing in earlier studies [13,14] and VðHÞ contains just three terms (1 mass term
and 2 quartic terms) as compared to 8 terms (3 mass terms and 5 quartic terms) in general 2HDM [1].
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One can further substitute the component fields of the two doublets H1 and H2 into Eq. (7). However the resulting
expression is tedious and not illuminating, and so will not be shown here.
Before moving to the next subsection on spontaneous symmetry breaking and minimization of the potential, we would

like to make some general comments regarding the G2HDM potential.

5Wenote that the λ0HΦ term in (6)was not included in the originalwork [13]. Also another invariant operator ðΦT
HϵHÞ†ðΦT

HϵHÞ, where ϵ is
the second-rank totally antisymmetric tensor acting on the SUð2ÞH space, can be written down. But this term can be expressed as
ðH†HÞðΦ†

HΦHÞ − ðH†ΦHÞðΦ†
HHÞ, and therefore is not linearly independent.

4We should point out that the λ0H term in VðHÞ was missing in earlier studies [13,14] and VðHÞ contains just three terms (1 mass term
and 2 quartic terms) as compared to 8 terms (3 mass terms and 5 quartic terms) in general 2HDM [1].

3Here, we consider renormalizable terms only. In addition, while the SUð2ÞH multiplication is explicitly shown, the SUð2ÞL
multiplication is implicit and suppressed.
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• Six new parameters from Vmix!

(H†ΦH)(ΦT
HϵH) and ΦT

HϵΔHΦH

• Note that terms like  
 
 
are invariant under SU(2)H but forbidden by U(1)X!



Accidental Discrete Symmetry

H2 → − H2, Gp,m
H → − Gp,m

H , Δp,m → − Δp,m

H1 → H1, ΦH,0 → ΦH,0, Δ0 → Δ0

• The scalar potential contained all possible 
renormalizable terms has the following accidental Z2 
symmetry, which is not put in by hand. 

• Thus we can have either inert Higgs doublet or 
Goldstone boson or triplet as scalar dark matter 
candidate in the model!

H = (H1
H2), ΦH = ( Gp

H

ΦH0), ΔH =

Δ0

2

Δp

2
Δm

2
−

Δ0

2



Symmetry Breaking (I)

vev. Electroweak symmetry breaking is triggered by the SU(2)H breaking. Since the

doublet H2 does not obtain a vev, its lowest mass component can be potentially a DM

candidate whose stability is protected by the gauge group SU(2)H .

• Similarly, the quadratic terms for two fields �1 and �2 have the coe�cients

µ2
� ± 1

2
M�� · v� +

1

2
��� · v2� +

1

2
�H� · v2 , (8)

respectively. The field �2 may acquire nontrivial vev and h�1i = 0 with the help of a

large second term.

II. SPONTANEOUS SYMMETRY BREAKING AND MASS SPECTRA

After specifying the model content and fermion mass generation, we now switch to the

scalar and gauge boson sector. We begin by studying the minimization conditions for spon-

taneous symmetry breaking, followed by investigating scalar and gauge boson mass spectra.

Special attention is paid to mixing e↵ects on both the scalars and gauge bosons.

A. Spontaneous Symmetry Breaking

To facilitate spontaneous symmetry breaking, let us shift the fields as follows

H1 =

0

@ G+

v+hp
2
+ iG

0
p
2

1

A , H2 =

0

@ H+

S+iPp
2

1

A , �H =

0
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H
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+ i
G

0
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A , �H =

0

@
�v�+�3

2
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2
�p

1p
2
�m

v���3

2

1

A .(9)

Here v, v� and v� are vevs to be determined by minimization of the potential;  G ⌘

{G+, G0, Gp

H
, G0

H
} are Goldstone bosons, to be absorbed by the longitudinal components of

W+, W 3, W p, W 03 respectively; and  ⌘ {h,H+, S, P,�2, �3,�p} are physical fields.

Substituting the vevs in the potential V in Eq. (1) leads to

V (v, v�, v�) =
1

4

⇥
�Hv

4 + ��v
4
� + ��v

4
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⇤
(10)

Minimization of the potential in Eq. (10) leads to the following three equations for the vevs
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H
�MH�v� + �H�v

2
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2
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= 0 . (13)
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Quadratic terms for H1 and H2

Quadratic terms for 𝚽1 and 𝚽2

(i) Uð1ÞX is introduced to simplify the Higgs potential
VT in Eq. (1). For example, a term ΦT

HΔHΦH
obeying the SUð2ÞH symmetry would be allowed
in the absence ofUð1ÞX. Note that as far as the scalar
potential is concerned, treating Uð1ÞX as a global
symmetry is sufficient to kill this and other un-
wanted terms. However having a global symmetry
lying around in the model defeats our original
purpose of gauging the discrete global Z2 symmetry.
Therefore we prefer to treat Uð1ÞX as a local
symmetry.

(ii) Note that the μ2H and μ2Φ terms in VðHÞ and VðΦHÞ
have the “right” signs while the μ2Δ in VðΔHÞ has the
“wrong” sign.

(iii) The quadratic terms for H1 and H2 have the
following coefficients
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2
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respectively. Since the four parameters MHΔ, λHΔ,
λHΦ and λ0HΦ can take on either positive or negative
values, even with a positive μ2H, Eqs. (8) and (9) can
be negative and positive respectively so that one can
achieve hH1i ≠ 0 and hH2i ¼ 0 to break SUð2ÞL.
Because the doublet H2 does not obtain a VEV, its
neutral component, if lighter than the charged Higgs,
can potentially be a DM candidate whose stability is
protected by the SUð2ÞH gauge symmetry.

(iv) Similarly, the quadratic terms for two fields Φ1 and
Φ2 have the coefficients

μ2Φ þ 1

2
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2
λΦΔ · v2Δ þ 1
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respectively. As in the above cases ofH1 andH2, even
with a positive μ2Φ, one can achieve hΦ1i ¼ 0 and
hΦ2i ≠ 0 by judicious choices of the parameters.

(v) In (4), if −μ2Δ < 0, SUð2ÞH is spontaneously broken
by the VEV hΔ3i ¼ −vΔ ≠ 0 with hΔp;m i ¼ 0 by
applying an SUð2ÞH rotation. In fact, this also
triggers the symmetry breaking of the other gauge
symmetries as discussed in the next subsection.

(vi) All terms in VðHÞ, VðΦHÞ, VðΔHÞ and VmixðH;
ΔH;ΦHÞ are Hermitian, implying all the coefficients
are necessarily real. Thus the scalar potential in
G2HDM is CP-conserving.

(vii) Classification of all the symmetry breaking patterns
of G2HDM like the analysis made in [2] for 2HDM
would be very interesting but nevertheless beyond
the scope of this work. We would like to address this
issue in the future.

C. Spontaneous symmetry breaking

To facilitate spontaneous symmetry breaking, let us shift
the fields as follows

H1 ¼
! Gþ

vþhffiffi
2

p þ i G
0ffiffi
2

p

#
; H2 ¼

!
Hþ

H0
2

#
;

ΦH ¼
 

Gp
H

vΦþϕ2ffiffi
2

p þ i G
0
Hffiffi
2

p

!
; ΔH ¼

 −vΔþδ3
2

1ffiffi
2

p Δp

1ffiffi
2

p Δm
vΔ−δ3

2

!
:

ð12Þ

Here v, vΦ and vΔ are VEVs to be determined by
minimization of the potential. The set ΨG ≡ fGþ; G0;
Gp

H;G
0
Hg are Goldstone bosons, to be absorbed by the

longitudinal components ofWþ,W3,Wp,W03 respectively.
Substituting the VEVs in the potential VT in Eq. (1)

leads to

VTðv; vΔ; vΦÞ ¼
1

4
½λHv4 þ λΦv4Φ þ λΔv4Δ

þ 2ðμ2Hv2 þ μ2Φv
2
Φ − μ2Δv

2
ΔÞ

− ðMHΔv2 þMΦΔv2ΦÞvΔ þ λHΦv2v2Φ
þ λHΔv2v2Δ þ λΦΔv2Φv

2
Δ&: ð13Þ

Note that the two new couplings λ0H and λ0HΦ do not
appear in Eq. (13). Thus minimization of the potential in
Eq. (13) yield the same set of VEVequations as in [13]. For
convenience, we here list them again

ð2λHv2 þ 2μ2H −MHΔvΔ þ λHΦv2Φ þ λHΔv2ΔÞ ¼ 0; ð14Þ
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4λΔv3Δ − 4μ2ΔvΔ −MHΔv2 −MΦΔv2Φ
þ 2vΔðλHΔv2 þ λΦΔv2ΦÞ ¼ 0: ð16Þ

One can solve for nontrivial v2 and v2Φ in terms of vΔ and
other parameters using Eqs. (14) and (15). Substituting these
solutions of v2 and v2Φ into Eq. (16) gives rise to a cubic
equation of vΔ which can be solved either analytically or
numerically. Once vΔ is known, one can substitute its value
back toEqs. (14) and (15) to determine v and vΦ respectively.
In this way, one can explicitly see the effects of the triplet’s
VEV vΔ on the breaking of the SM SUð2ÞL × Uð1ÞY and
theUð1ÞX, after it first triggers SUð2ÞH symmetry breaking.
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with a positive μ2Φ, one can achieve hΦ1i ¼ 0 and
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applying an SUð2ÞH rotation. In fact, this also
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One can solve for nontrivial v2 and v2Φ in terms of vΔ and
other parameters using Eqs. (14) and (15). Substituting these
solutions of v2 and v2Φ into Eq. (16) gives rise to a cubic
equation of vΔ which can be solved either analytically or
numerically. Once vΔ is known, one can substitute its value
back toEqs. (14) and (15) to determine v and vΦ respectively.
In this way, one can explicitly see the effects of the triplet’s
VEV vΔ on the breaking of the SM SUð2ÞL × Uð1ÞY and
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3.1 Spontaneous symmetry breaking

To facilitate spontaneous symmetry breaking, let us shift the fields as follows

H1 =

(
G+

v+h√
2
+ iG0

)
, ΦH =

(
Gp

H
vΦ+φ2√

2
+ iG0

H

)
, ∆H =

( −v∆+δ3
2

1√
2
∆p

1√
2
∆m

v∆−δ3
2

)
(3.1)

and H2 = (H+
2 H0

2 )
T . Here v, vΦ and v∆ are vevs to be determined by minimization

of the potential; ΨG ≡ {G+, G3, Gp
H , G0

H} are Goldstone bosons, to be absorbed by the

longitudinal components of W+, W 3, W p, W ′3 respectively; and Ψ ≡ {h,H2,Φ1,φ2, δ3,∆p}
are the physical fields.

Substituting the vevs in the potential V in eq. (2.1) leads to

V (v, v∆, vΦ) =
1

4

[
λHv4 + λΦv

4
Φ + λ∆v

4
∆ + 2

(
µ2
Hv2 + µ2

Φv
2
Φ − µ2

∆v
2
∆

)

−
(
MH∆v

2 +MΦ∆v
2
Φ

)
v∆ + λHΦv

2v2Φ + λH∆v
2v2∆ + λΦ∆v

2
Φv

2
∆

]
(3.2)

Minimization of the potential in eq. (3.2) leads to the following three equations for the vevs

v ·
(
2λHv2 + 2µ2

H −MH∆v∆ + λHΦv
2
Φ + λH∆v

2
∆

)
= 0 , (3.3)

vΦ ·
(
2λΦv

2
Φ + 2µ2

Φ −MΦ∆v∆ + λHΦv
2 + λΦ∆v

2
∆

)
= 0 , (3.4)

4λ∆v
3
∆ − 4µ2

∆v∆ −MH∆v
2 −MΦ∆v

2
Φ + 2v∆

(
λH∆v

2 + λΦ∆v
2
Φ

)
= 0 . (3.5)

Note that one can solve for the non-trivial solutions for v2 and v2Φ in terms of v∆ and other

parameters using eqs. (3.3) and (3.4). Substitute these solutions of v2 and v2Φ into eq. (3.5)

leads to a cubic equation for v∆ which can be solved analytically (See appendix A).

3.2 Scalar mass spectrum

The scalar boson mass spectrum can be obtained from taking the second derivatives of the

potential with respect to the various fields and evaluate it at the minimum of the potential.

The mass matrix thus obtained contains three diagonal blocks. The first block is 3× 3. In

the basis of S = {h, δ3,φ2} it is given by
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This matrix can be diagonalized by a similar transformation with orthogonal matrix O,

which defined as |f⟩i ≡ Oij |m⟩j with i and j referring to the flavour and mass eigen-

states respectively,
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h2
,m2
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) , (3.7)

where the three eigenvalues are in ascending order. The lightest eigenvalue mh1 will be

identified as the 125GeV Higgs h1 observed at the LHC and the other two mh2 and mh3
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3.1 Spontaneous symmetry breaking
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DM relic abundance and stays unscathed from the EWPT data in the limit of IHDM

where DM is purely the second neutral Higgs H0
2 . Detailed and systematic study will be

pursued elsewhere.

As an outlook, we briefly comment on collider signatures of this model, for which

detailed analysis goes beyond the scope of this work and will be pursued in the future.

Due to the SU(2)H symmetry, searches for heavy particles are similar to those of SUSY

partners of the SM particles with R-parity. In the case of H0
2 being the DM candidate,

one can have, for instance, uRuR → W ′pW ′m via t-channel exchange of uHR , followed

by W ′p → uRuHR → uRH0
2uL and its complex conjugate, leading to 4 jets plus missing

transverse energy. Therefore, searches on charginos or gauginos in the context of SUSY

may also apply to this model. Furthermore, this model can also yield mono-jet or mono-

photon signatures: uRuR → H0
2H

0
2 plus γ or g from the initial state radiation. Finally,

the recent diboson excess observed by the ATLAS Collaboration [76] may be partially

explained by 2TeV Z ′ decays into W+W− via the Z ′ − Z mixing.

Phenomenology of G2HDM is quite rich. In this work we have only touched upon its

surface. Many topics like constraints from vacuum stability as well as DM and neutrinos

physics, collider implications, etc are worthwhile to be pursued further. We would like to

return to some of these issues in the future.

A Analytical expression for v, v∆ and vΦ

From eqs. (3.3) and (3.4), besides the trivial solutions of v2 = v2Φ = 0 one can deduce the

following non-trivial expressions for v2 and v2Φ respectively,

v2 =
(2λΦλH∆ − λHΦλΦ∆)v2∆ + (λHΦMΦ∆ − 2λΦMH∆)v∆ + 2(2λΦµ2

H − λHΦµ2
Φ)

λ2
HΦ − 4λHλΦ

,

(A.1)

v2Φ =
(2λHλΦ∆ − λHΦλH∆)v2∆ + (λHΦMH∆ − 2λHMΦ∆)v∆ + 2(2λHµ2

Φ − λHΦµ2
H)

λ2
HΦ − 4λHλΦ

.

(A.2)

Substituting the above expressions for v2 and v2Φ into eq. (3.5) leads to the following cubic

equation for v∆:

v3∆ + a2v
2
∆ + a1v∆ + a0 = 0 , (A.3)

where a2 = C2/C3, a1 = C1/C3 and a0 = C0/C3 with

C0 = 2 (λHΦMΦ∆ − 2λΦMH∆)µ
2
H + 2 (λHΦMH∆ − 2λHMΦ∆)µ

2
Φ , (A.4)

C1 = 2
[
2 (2λH∆λΦ − λHΦλΦ∆)µ

2
H + 2 (2λHλΦ∆ − λH∆λHΦ)µ

2
Φ

+2
(
4λHλΦ − λ2

HΦ

)
µ2
∆ + λHM2

Φ∆ − λHΦMH∆MΦ∆ + λΦM
2
H∆

]
, (A.5)

C2 = 3 [(λH∆λHΦ − 2λHλΦ∆)MΦ∆ + (λHΦλΦ∆ − 2λH∆λΦ)MH∆] , (A.6)

C3 = 4
[
λH
(
λ2
Φ∆ − 4λ∆λΦ

)
− λH∆λHΦλΦ∆ + λ2

H∆λΦ + λ∆λ
2
HΦ

]
. (A.7)
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Yukawa Couplings (I)

• Additional terms involve H2 couples between SM fermions and 
heavy fermions with the same SM Yukawa couplings!  
Since H2 has no VEV, this implies absence of  FCNC interaction for 
SM fermions!  
(Natural flavor conservation: Weinberg & Glashow, ’77; Paschos, ’77  
Minimal flavor violation: G. D'Ambrosio, G. F. Giudice, G. Isidori, 
A. Strumia ’02)

SM

• We pair the SM SU(2)L singlet fermions with heavy fermions  
to form SU(2)H doublets. SM fermions obtain masses through 
<H1>
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In this work, we will focus on two benchmark mass spec-
tra (Spectrum A and Spectrum B) of the G2HDM for our
collider studies. Spectrum A contains heavy and decoupled
new quarks, while Spectrum B comprises relatively light new
quarks. For all scenarios, new leptons are assumed to be
lighter than the additional gauge bosons of interest. Due to
the fact Z ′ couples to SM quarks and can be singly produced
at the LHC, we first update the bounds on the SU (2)H gauge
coupling g H as a function of the Z ′ mass mZ ′ by using the
newly released results of the dilepton and dijet searches from
the LHC. Next, Z ′ exotic decays into new heavy fermions
followed by decays into SM fermions are investigated at the
14 TeV High Luminosity LHC (HL-LHC) and bounds from
LHC searches on supersymmetric particles can be applied
with simplified assumptions. Then, for the neutral W ′ (p,m)

in G2HDM we propose searching for two channels: two lep-
tons and four leptons with missing transverse energy. We
shall demonstrate that the pair production of W ′ (p,m) can
feature quite distinctive kinematical distributions from the
W ′

H pair in LHT, which will be chosen as a representative
model for comparisons since W ′ can only be pair produced
in both models.

This rest of this paper is laid out as follows. In Sect. 2, we
briefly review the G2HDM and spell out the relevant gauge
interactions for collider searches of interest. In Sect. 3, we
discuss the methodology employed in the collider simula-
tions. In Sect. 4, we revisit Z ′ direct search limits from the
latest 13TeV LHC data and explore some of its exotic decay
channels at the HL-LHC. In Sect. 5, signatures for W ′ at
a future 100 TeV proton–proton collider are scrutinized in
detail and compared with those from LHT. We summarize
our findings and conclude in Sect. 6. For convenience, we
also present the scalar potential of G2HDM and the associ-
ated scalar mass spectra in two appendices. More details of
the scalar sector of G2HDM can be found in [38].

2 G2HDM gauge interactions

In this section, we give a brief review of G2HDM, focusing
on gauge interactions that are relevant to our study of collider
searches. The particle contents summarized in Table 1 have
the minimal set of new heavy chiral fermions required for
anomaly cancellation and new scalars for facilitating sponta-
neous electroweak symmetry breaking, as proposed in [14].

As mentioned earlier, the two SU (2)L Higgs doublets H1
and H2 are embedded into a doublet H under a non-abelian
SU (2)H gauge group. H is also charged under an additional
gauged abelian groupU (1)X . To provide masses to the addi-
tional gauge bosons, we introduce an SU (2)H scalar triplet
!H and doublet "H (both are singlets under the SM gauge
group). The vacuum expectation value (vev) of the triplet
!H not only breaks SU (2)H spontaneously, but it also trig-

gers the electroweak symmetry breaking by inducing a vev
to the first SU (2)L doublet H1, which is identified as the
SM Higgs doublet. In contrast, the second Higgs doublet H2
does not obtain a vev and its neutral component could be
the DM candidate. As shown in [14], DM stability is pro-
tected by the SU (2)H symmetry and Lorentz invariance. In
other words, an inert Higgs doublet H2 emerges naturally in
G2HDM without resorting to the discrete Z2 symmetry.1 We
specify the most general and renormalizable scalar potential
invariant under SU (2)L × U (1)Y × SU (2)H × U (1)X in
Appendix A and in turn discuss the scalar mass spectra in
Appendix B.

To generate masses for the SM fermions via Yukawa cou-
plings in an SU (2)H invariant manner, we choose to pair
SM right-handed fermions with new right-handed ones into
SU (2)H doublets, whereas the SM left-handed fermions are
singlets under SU (2)H as indicated in Table 1. In addi-
tion, to make all new fermions massive via the vev of the
SU (2)H doublet "H = ("1,"2)

T, extra left-handed fields
f HL ( f = d,u, e, ν) are introduced. The corresponding
SU (2)H invariant Yukawa couplings are

LYuk ⊃ −y′
dd

H
L

(
dHR "2 − dR"1

)
− y′

uu
H
L

(
uR"∗

1 + uHR "∗
2

)

− y′
ee

H
L

(
eHR "2 − eR"1

)
− y′

ννHL

(
νR"∗

1 + νHR "∗
2

)
+ H.c..

(1)

With a non-vanishing ⟨"2⟩, the four Dirac fields dH , uH ,
eH , and νH acquire a mass of y′

d⟨"2⟩, y′
u⟨"2⟩, y′

e⟨"2⟩, and
y′
ν⟨"2⟩, respectively. On the other hand, the SM quarks and

leptons obtain their masses from the vev of H1 via the Yukawa
couplings,

LYuk ⊃ +yd Q̄L

(
dHR H2 − dRH1

)
− yuQ̄L

(
uR H̃1 + uHR H̃2

)

+ ye L̄ L

(
eHR H2 − eRH1

)
− yν L̄ L

(
νR H̃1 + νHR H̃2

)
+ H.c.,

(2)

with H̃1,2 = iτ2H∗
1,2. Note that in both Yukawa couplings

given in (1) and (2) only the SM Higgs doublet H1 cou-
ples bilinearly with the SM fermions. Thus, FCNC interac-
tions for the SM fermions naturally are absent at tree level in
G2HDM. It also implies the new heavy fermions can decay
into SM fermions plus DM via the Yukawa couplings in (2).
For instance, f HR → fL H0∗

2 where H0∗
2 is a DM candidate

and is manifest as the missing transverse energy. We note
that the absence of FCNC interactions in 2HDM by embed-
ding the discrete Z2 symmetry into an extra U (1)′ has been
studied in [40–43].

1 After symmetry breaking in G2HDM, one can actually show that an
effective Z2 symmetry emerges [39].

123

• SM neutrinos get Dirac masses.

• The second doublet H2 is inert — it could be DM candidate if  it is 
lighter than all heavy fermions, scalars, and gauge bosons.



Yukawa Couplings (II)

• To give masses to the new heavy fermions, we add their left-handed 
partners to couple to a SU(2)H scalar doublet 𝚽H=(𝚽1 𝚽2)T
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In this work, we will focus on two benchmark mass spec-
tra (Spectrum A and Spectrum B) of the G2HDM for our
collider studies. Spectrum A contains heavy and decoupled
new quarks, while Spectrum B comprises relatively light new
quarks. For all scenarios, new leptons are assumed to be
lighter than the additional gauge bosons of interest. Due to
the fact Z ′ couples to SM quarks and can be singly produced
at the LHC, we first update the bounds on the SU (2)H gauge
coupling g H as a function of the Z ′ mass mZ ′ by using the
newly released results of the dilepton and dijet searches from
the LHC. Next, Z ′ exotic decays into new heavy fermions
followed by decays into SM fermions are investigated at the
14 TeV High Luminosity LHC (HL-LHC) and bounds from
LHC searches on supersymmetric particles can be applied
with simplified assumptions. Then, for the neutral W ′ (p,m)

in G2HDM we propose searching for two channels: two lep-
tons and four leptons with missing transverse energy. We
shall demonstrate that the pair production of W ′ (p,m) can
feature quite distinctive kinematical distributions from the
W ′

H pair in LHT, which will be chosen as a representative
model for comparisons since W ′ can only be pair produced
in both models.

This rest of this paper is laid out as follows. In Sect. 2, we
briefly review the G2HDM and spell out the relevant gauge
interactions for collider searches of interest. In Sect. 3, we
discuss the methodology employed in the collider simula-
tions. In Sect. 4, we revisit Z ′ direct search limits from the
latest 13TeV LHC data and explore some of its exotic decay
channels at the HL-LHC. In Sect. 5, signatures for W ′ at
a future 100 TeV proton–proton collider are scrutinized in
detail and compared with those from LHT. We summarize
our findings and conclude in Sect. 6. For convenience, we
also present the scalar potential of G2HDM and the associ-
ated scalar mass spectra in two appendices. More details of
the scalar sector of G2HDM can be found in [38].

2 G2HDM gauge interactions

In this section, we give a brief review of G2HDM, focusing
on gauge interactions that are relevant to our study of collider
searches. The particle contents summarized in Table 1 have
the minimal set of new heavy chiral fermions required for
anomaly cancellation and new scalars for facilitating sponta-
neous electroweak symmetry breaking, as proposed in [14].

As mentioned earlier, the two SU (2)L Higgs doublets H1
and H2 are embedded into a doublet H under a non-abelian
SU (2)H gauge group. H is also charged under an additional
gauged abelian groupU (1)X . To provide masses to the addi-
tional gauge bosons, we introduce an SU (2)H scalar triplet
!H and doublet "H (both are singlets under the SM gauge
group). The vacuum expectation value (vev) of the triplet
!H not only breaks SU (2)H spontaneously, but it also trig-

gers the electroweak symmetry breaking by inducing a vev
to the first SU (2)L doublet H1, which is identified as the
SM Higgs doublet. In contrast, the second Higgs doublet H2
does not obtain a vev and its neutral component could be
the DM candidate. As shown in [14], DM stability is pro-
tected by the SU (2)H symmetry and Lorentz invariance. In
other words, an inert Higgs doublet H2 emerges naturally in
G2HDM without resorting to the discrete Z2 symmetry.1 We
specify the most general and renormalizable scalar potential
invariant under SU (2)L × U (1)Y × SU (2)H × U (1)X in
Appendix A and in turn discuss the scalar mass spectra in
Appendix B.

To generate masses for the SM fermions via Yukawa cou-
plings in an SU (2)H invariant manner, we choose to pair
SM right-handed fermions with new right-handed ones into
SU (2)H doublets, whereas the SM left-handed fermions are
singlets under SU (2)H as indicated in Table 1. In addi-
tion, to make all new fermions massive via the vev of the
SU (2)H doublet "H = ("1,"2)

T, extra left-handed fields
f HL ( f = d,u, e, ν) are introduced. The corresponding
SU (2)H invariant Yukawa couplings are

LYuk ⊃ −y′
dd

H
L

(
dHR "2 − dR"1

)
− y′

uu
H
L

(
uR"∗

1 + uHR "∗
2

)

− y′
ee

H
L

(
eHR "2 − eR"1

)
− y′

ννHL

(
νR"∗

1 + νHR "∗
2

)
+ H.c..

(1)

With a non-vanishing ⟨"2⟩, the four Dirac fields dH , uH ,
eH , and νH acquire a mass of y′

d⟨"2⟩, y′
u⟨"2⟩, y′

e⟨"2⟩, and
y′
ν⟨"2⟩, respectively. On the other hand, the SM quarks and

leptons obtain their masses from the vev of H1 via the Yukawa
couplings,

LYuk ⊃ +yd Q̄L

(
dHR H2 − dRH1

)
− yuQ̄L

(
uR H̃1 + uHR H̃2

)

+ ye L̄ L

(
eHR H2 − eRH1

)
− yν L̄ L

(
νR H̃1 + νHR H̃2

)
+ H.c.,

(2)

with H̃1,2 = iτ2H∗
1,2. Note that in both Yukawa couplings

given in (1) and (2) only the SM Higgs doublet H1 cou-
ples bilinearly with the SM fermions. Thus, FCNC interac-
tions for the SM fermions naturally are absent at tree level in
G2HDM. It also implies the new heavy fermions can decay
into SM fermions plus DM via the Yukawa couplings in (2).
For instance, f HR → fL H0∗

2 where H0∗
2 is a DM candidate

and is manifest as the missing transverse energy. We note
that the absence of FCNC interactions in 2HDM by embed-
ding the discrete Z2 symmetry into an extra U (1)′ has been
studied in [40–43].

1 After symmetry breaking in G2HDM, one can actually show that an
effective Z2 symmetry emerges [39].

123

• H1 does not couple to heavy fermions. So the SM Higgs signal 
strengths are not affected by the new fermions if  mixing effects are 
turned off.

• U(1)X prevents Yukawa couplings that may give rise to mixings 
among SM fermions and heavy fermions.  For example, 

uH
L URϵΦH ∼ uH

L (uRΦ2 − uH
R Φ1), ⋯

• Majorana mass term is also possible for the heavy neutrinos.

νHc
L νH

L



Scalar Mass Spectrum (I)

• Expand the scalar fields around the vacua  
 
 
 
 

• We have 8 generators for the electroweak gauge 
group but 6 Goldstone bosons. We left with 2 
unbroken generators associated with the two 
massless photon and dark photon. The two 
unbroken generators are

A. Spontaneous Symmetry Breaking

To facilitate spontaneous symmetry breaking, let us shift the fields as follows (Note some

factors of 1/
p
2 di↵er from the NP paper!)

H1 =

0

@ G+

v+hp
2
+ iG

0
p
2

1

A , H2 =

0

@H+

H0
2

1

A , �H =

0

@ Gp

H

v�+�2p
2

+ i
G

0
Hp
2

1

A , �H =

0

@
�v�+�3

2
1p
2
�p

1p
2
�m

v���3

2

1

A . (9)

Here v, v� and v� are vevs to be determined by minimization of the potential;  G ⌘

{G+, G0, Gp

H
, G0

H
} are Goldstone bosons, to be absorbed by the longitudinal components of

W+, W 3, W p, W 03 respectively; and  ⌘ {h,H+, H0
2 ,�2, �3,�p} are physical fields.

Substituting the vevs in the potential V in Eq. (1) leads to

V (v, v�, v�) =
1

4

⇥
�Hv

4 + ��v
4
� + ��v

4
� + 2

�
µ2
H
v2 + µ2

�v
2
� � µ2

�v
2
�

�

�
�
MH�v

2 +M��v
2
�

�
v� + �H�v

2v2� + �H�v
2v2� + ���v

2
�v

2
�

⇤
. (10)

Note that �0
H� does not enter into the above equation. Minimization of the potential in

Eq. (10) leads to the following three equations for the vevs

v ·
�
2�Hv

2 + 2µ2
H
�MH�v� + �H�v

2
� + �H�v

2
�

�
= 0 , (11)

v� ·
�
2��v

2
� + 2µ2

� �M��v� + �H�v
2 + ���v

2
�

�
= 0 , (12)

4��v
3
� � 4µ2

�v� �MH�v
2 �M��v

2
� + 2v�

�
�H�v

2 + ���v
2
�

�
= 0 . (13)

Note that one can solve for the non-trivial solutions for v2 and v2� in terms of v� and other

parameters using Eqs. (11) and (12). Substitute these solutions of v2 and v2� into Eq. (13)

leads to a cubic equation for v� which can be solved analytically.

B. Scalar Mass Spectrum

The scalar boson mass spectrum can be obtained from taking the second derivatives of the

potential with respect to the various fields and evaluate it at the minimum of the potential.

The mass matrix thus obtained contains three diagonal blocks. The first block is 3⇥ 3. In

6

ΦGoldstone ≡ {G0, G±, G0
H, Gp,m

H }
ΦPhysical ≡ {h, H±, H0

2 , H0*
2 , δ3, Δp,m}

Q = T3
L + Y QD = 4 cos2 θWT3

L − 4 sin2 θWY + 2T3
H + X



Scalar Mass Spectrum (II)

• The 125 GeV Higgs is now a mixture of  {h,𝜙2, δ3}  
 
 

• However, the mixing is constrained to be quite small, 
suppressed by v/v𝚽 as v ∼ 246 GeV and v𝚽 ≥ 10 TeV due to 
LEP Z-Zʹ mixing constraint (More on this later)!

the basis of S = {h,�2, �3} it is given by [Note that we have reordered the basis. –TC]

M2
0 =

0

BBB@

2�Hv2 �H�vv�
v

2 (MH� � 2�H�v�)

�H�vv� 2��v2�
v�
2 (M�� � 2���v�)

v

2 (MH� � 2�H�v�)
v�
2 (M�� � 2���v�)

1
4v�

(8��v3� +MH�v2 +M��v2�)

1

CCCA
.
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where the three eigenvalues are in ascending order. The lightest eigenvalue mh1 will be

identified as the 125 GeV Higgs h1 observed at the LHC and the other two mh2 and mh3

are for the heavier Higgses h2 and h3. The physical Higgs hi is a linear combination of the
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2 +2v��p,m. Indeed the vector (v� �v 2v�)T

is annihilated by M02
0 in (16).
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λH Δ is slightly more stringent than others because it has
relatively large coefficients inside the scattering matrixM1

in Eq. (42).
On the other hand, effects of the VS condition are hardly

visible in the parameter space except for the λH Φ − λ0H Φ
plane. The constraints originate from the parameter λ̃H ΦðξÞ.
Recall that λ̃H ΦðξÞ≡ λH Φ þ λ0H Φξ with 0 ≤ ξ ≤ 1. From

the first inequality of Eq. (33) λ̃H ΦðξÞ ≥ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃H ðηÞλΦ

q
, it

implies λH Φ and λ0H Φ cannot be too negative at the same
time, leading to the blank bottom-left corner in the bottom-
left panel of Fig. 2. As already explained in Fig. 1, when
we combine both constraints from VS and PU, the allowed
region is further shrunk due to the tension between the
copositive conditions Eq. (33) and the unitarity limits
Eq. (60).

IV. HIGGS PHENOMENOLOGY

In this section, we will consider the phenomenological
constraints from the Higgs physics at the LHC.

A. Higgs diphoton decay

In G2HDM, as explained above the 125 GeV Higgs
boson h1 is a linear combination of h, ϕ2 and δ3:

h1 ¼ O 11hþ O 21ϕ2 þ O 31δ3; ð61Þ

where O ij are the elements of the orthogonal matrix O that
diagonalizes the mass matrix M2

0 displayed in Eq. (18).
The mixing has an impact on both the ggH production and
Higgs decay branching ratio into two photons.

FIG. 2. Allowed regions of the parameter space by the VS, PU and (VSþ PU) constraints projected onto the planes of ðλH Φ; λH ΔÞ,
ðλ0H Φ; λH ΦÞ, ðλH Φ; λΦΔÞ and ðλ0H Φ; λH ΔÞ.
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Scalar Mass Spectrum (III) 

• The above mass matrix has zero determinant! 

• The zero eigenvalue state is the Goldstone boson 
absorbed by the longitudinal component of  the gauge 
bosons of  SU(2)H                , a vector dark matter candidate. 

• The other two eigenstates correspond to a dark Higgs          
and a scalar dark matter candidate     .
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W′�(p,m)
H

Δ̃
D

Δ̃ = OD
13G

p
H + OD

23H
0*
2 + OD

33Δp (Heavier)

D = OD
12G

p
H + OD

22H0*
2 + OD

32Δp (Lighter)



Scalar Mass Spectrum (IV)

• The rest

given by

M2
D,e� = ... (17)

D can be a DM candidate in G2HDM. Note that in the parameter space where the quantity

inside the square root of Eq. (17) is very small, e� would be degenerate with D. In this

case, we need to include coannihilation processes for relic density calculation. Moreover, it

is possible in our model to have ⌫H

R
or �⌫ (⌫R either is too light or is not stable since it

decays to SM lepton and Higgs) to be DM candidate as well.

The final block is 4⇥ 4 diagonal, giving

m2
H

±
2
= MH�v� +

1

2
�0
H�v

2
� , (18)

for the physical charged Higgs H±
2 , and

m2
G± = m2

G0 = m2
G

0
H

= 0 , (19)

for the three Goldstone boson fields G±, G0 and G0
H
. Note that we have used the minimiza-

tion conditions Eqs. (11), (12) and (13) to simplify various matrix elements of the above

mass matrices.

Altogether we have 6 Goldstone particles in the scalar mass spectrum, we thus expect to

have two massless gauge particles left over after spontaneous symmetry breaking. One is

naturally identified as the photon while the other one could be interpreted as dark photon

�D. [Light dark photon may be good for Sommerfeld e↵ect!? – TC]

[One of the reason to introduce the triplet �H was to give charged Higgs boson a mass.

See Eq. (18). Now with the new �0
H� term included, it seems to me we don’t need the triplet

anymore. If the triplet is gone, we may not need U(1)X as well. I think we can have a more

economical G2HDM without the U(1)X and the triplet �H . – TC]

8

Physical Charged Higgs:

Goldstone Bosons: (Longitudinal components of  W±, Z,Zʹ)

Different from IHDM!

the lightest. In this work, we will assume D is the DM
candidate. In our numerical scan, detailed in later sec-
tions, we will check to make sure D must be lighter than
W0ðp;m Þ, H# and all heavy fermions.
The final block is 4 × 4 and diagonal with

m 2
H# ¼ MHΔvΔ −

1

2
λ0Hv

2 þ 1

2
λ0HΦv

2
Φ; ð22Þ

for the physical charged Higgs H#, and

m 2
G# ¼ m 2

G0 ¼ m 2
G0

H
¼ 0; ð23Þ

for the four Goldstone boson fields G#, G0 and G0
H. Note

that we have used the minimization conditions Eqs. (14)–
(16) to simplify various matrix elements of the above mass
matrices. If the charged Higgs mass is close to the DM
mass, we should include the corresponding coannihilation
contributions as well.
The six Goldstone particles G#, G0, G0

H and G̃p;m will
be absorbed by the longitudinal components of the
massive gauge bosons W#, Z, Z0 and W0ðp;m Þ. It implies
that there are two unbroken generators and thus two
massless gauge particles left over after spontaneous
symmetry breaking. One is naturally identified as the
photon while the other one could be interpreted as a dark
photon γD or another neutral gauge boson Z00. To give a
mass to the γD or Z00, one can either use the Stueckelberg
mechanism [23–26] or introduce yet another Higgs field
ΦX solely charged under Uð1ÞX to break one of the
remaining two unbroken generators. Depending on the
magnitude of the Stueckelberg mass MX or the VEV
hΦXi, one can identify the extra neutral gauge boson as
either γD or Z00. Only one unbroken generator for the
massless photon should remain at the end of this game.
The physical neutral gauge bosons γ, Z, Z0 and γD=Z00 are
in principle mixtures of the gauge field components W3,
B, W03 and X [13].
After symmetry breaking, by scrutinizing the whole

Lagrangian, one can discover that an effective Z2 parity
can be assigned consistently to the physical particle
spectrum of the model: All the SM particles (with h1
identified as the 125 GeV Higgs observed at the LHC), Z0,
γD=Z00, h2 and h3 are even, while D , Δ̃,H#,W0ðp;m Þ as well
as all heavy fermions fH are odd under this accidental
discrete symmetry. As mentioned above, we will assume D
is the lightest odd particle and can serve as a DM candidate
in this work.

III. THEORETICAL CONSTRAINTS

In this section, we will discuss the theoretical constraints
arising from tree-level vacuum stability (VS) and pertur-
bative unitarity (PU) on the scalar sector in G2HDM.

A. Vacuum stability

For the stability of the vacuum we have to examine the
scalar potential at large-field values and make sure it is
bounded from below. Therefore it is sufficient to consider
all the quartic terms in the scalar potential which are

V4 ¼ þλHðH†HÞ2 þ λ0Hð−H
†
1H1H

†
2H2 þH†

1H2H
†
2H1Þ

þ λΦðΦ†
HΦHÞ2 þ λΔðTrðΔ2

HÞÞ2

þ λHΦðH†HÞðΦ†
HΦHÞ þ λ0HΦðH†ΦHÞðΦ†

HHÞ

þ λHΔðH†HÞTrðΔ2
HÞ þ λΦΔðΦ†

HΦHÞTrðΔ2
HÞ: ð24Þ

Following the methods in [27,28], we introduce the
following basis (x, y, z) and two ratios ξ and η, defined as

x≡H†H; ð25Þ

y≡Φ†
HΦH; ð26Þ

z≡ TrðΔ†
HΔHÞ; ð27Þ

and

ξ≡ ðH†ΦHÞðΦ†
HHÞ

ðH†HÞðΦ†
HΦHÞ

; ð28Þ

η≡ ð−H†
1H1H

†
2H2 þH†

1H2H
†
2H1Þ

ðH†HÞ2
: ð29Þ

One can show that the ratios satisfy 0 ≤ ξ ≤ 1 and
−1=4 ≤ η ≤ 0. While η is always above −1=4, the actual
lower bound and its effects will be discussed in more
detail below. To deduce the conditions for the potential
to be bounded from below, we rewrite the quartic terms V4

in terms of x, y and z with the ratio parameters ξ and η.
That is

V4 ¼ ð x y z Þ ·Qðξ; ηÞ ·

0

B@
x

y

z

1

CA; ð30Þ

with

Qðξ; ηÞ ¼

0

BB@

λ̃HðηÞ 1
2 λ̃HΦðξÞ 1

2 λHΔ
1
2 λ̃HΦðξÞ λΦ 1

2 λΦΔ
1
2 λHΔ

1
2 λΦΔ λΔ

1

CCA; ð31Þ

and λ̃HðηÞ≡ λH þ ηλ0H, λ̃HΦðξÞ≡ λHΦ þ ξλ0HΦ.
According to [29,30], using the Sylvester’s criterion

or requiring semipositive definite eigenvalues of the
quadratic form Qðξ; ηÞ, albeit mathematically rigorous,
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while that of �H provides a mass to the new fermions through SU(2)H-invariant

Yukawa couplings; etc.

B. Masses in the gauge sector of the G2HDM

Consider the neutral gauge bosons basis {B,W 3,W 03, X} and the mass eigenstates

basis {A,Z1, Z2, Z3}. In the basis of the initial gauge bosons, the 4⇥4 mass matrix

is given by

M
2

gauge =

0

BBBBBB@

g
02
v
2

4
+M2

Y
�

g
0
g v

2

4

g
0
gHv

2

4

g
0
gXv

2

2
+MXMY

�
g
0
g v

2

4

g
2
v
2

4
�

ggHv
2

4
�

ggXv
2

2

g
0
gHv

2

4
�

ggHv
2

4

g
2
H(v

2
+v

2
�)

4

gHgX(v
2�v

2
�)

2

g
0
gXv

2

2
+MXMY �

ggXv
2

2

gHgX(v
2�v

2
�)

2
g2
X
(v2 + v2

�
) +M2

X

1

CCCCCCA
. (1)

This matrix can be diagonalized by a 4⇥4 orthogonal rotation matrix that we will

denote as O
4⇥4

(O
4⇥4

)
T
M

2

gaugeO
4⇥4

= diag(0,M2

Z1
,M2

Z2
,M2

Z3
), (2)

where M2

Z1
< M2

Z2
< M2

Z3
. The matrix M2

gauge can be further simplified by assuming

MY = 0. This simplification allows us to write the rotation matrix in the simpler

form

O
4⇥4

MY =0
=

0

BBBBB@

cW �sW 0 0

sW cW 0 0

0 0 1 0

0 0 0 1

1

CCCCCA

0

BBBBB@

1 0 0 0

0

0 O

0

1

CCCCCA
, (3)

where cW and sW represent cos ✓W and sin ✓W , respectively. It is obvious that this

matrix is just the product of the SM gauge rotation matrix made into a 4⇥4 matrix,

In the basis{B, W3, W′�3, X} :

MX, MY are Stueckelberg masses

|ϵ | = |MY /MX | ≤ 0.061 1 − (MZ /MX)2

Feldman, Kors, Liu, Nath, ’05-’07

Ruegg & Ruiz-Altaba, ’04 SM with nonzero MY! The theory is  
well defined!

StSM with both MX and MY nonzero!

Neutral Gauge Bosons Z1,Z2,Z3 (I)
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B. Masses in the gauge sector of the G2HDM

Consider the neutral gauge bosons basis {B,W 3,W 03, X} and the mass eigenstates

basis {A,Z1, Z2, Z3}. In the basis of the initial gauge bosons, the 4⇥4 mass matrix

is given by

M
2

gauge =

0

BBBBBB@
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02
v
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+M2
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�
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0
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g
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gHv
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gXv
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�
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g v
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�
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�

ggXv
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�

ggHv
2

4

g
2
H(v

2
+v

2
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2�v
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2
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0
gXv

2
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+MXMY �

ggXv
2

2

gHgX(v
2�v

2
�)

2
g2
X
(v2 + v2

�
) +M2

X

1

CCCCCCA
. (1)

This matrix can be diagonalized by a 4⇥4 orthogonal rotation matrix that we will

denote as O
4⇥4

(O
4⇥4

)
T
M

2

gaugeO
4⇥4

= diag(0,M2

Z1
,M2

Z2
,M2

Z3
), (2)

where M2

Z1
< M2

Z2
< M2

Z3
. The matrix M2

gauge can be further simplified by assuming

MY = 0. This simplification allows us to write the rotation matrix in the simpler

form

O
4⇥4

MY =0
=

0

BBBBB@

cW �sW 0 0

sW cW 0 0

0 0 1 0

0 0 0 1

1

CCCCCA

0

BBBBB@

1 0 0 0

0

0 O

0

1

CCCCCA
, (3)

where cW and sW represent cos ✓W and sin ✓W , respectively. It is obvious that this

matrix is just the product of the SM gauge rotation matrix made into a 4⇥4 matrix,
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called O
4⇥4

SM , times a general 3 ⇥ 3 orthogonal rotation matrix O which was also

converted to a 4 ⇥ 4 matrix. After applying the rotation O
4⇥4

SM to M2

gauge
(MY = 0),

the result is

O
4⇥4

SM M
2

gaugeO
4⇥4

SM =

0

BBBBBB@

0 0 0 0

0
v
2(g2+g

02)

4
�

gHv
2
p

g2+g02

4
�

gXv
2
p

g2+g02

2

0 �
gHv

2
p

g2+g02

4

g
2
H(v

2
+v

2
�)

4

gXgH(v
2�v

2
�)

2

0 �
gXv

2
p

g2+g02

2
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2�v

2
�)

2
g2
X
(v2 + v2

�
) +M2

X

1

CCCCCCA

=

0

BBBBBB@

0 0 0 0

0 (MZSM)
2

�
gHv

2
MZSM �gXvMZSM

0 �
gHv

2
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g
2
H(v

2
+v

2
�)

4

gXgH(v
2�v

2
�)

2

0 �gXvMZSM
gXgH(v

2�v
2
�)

2
g2
X
(v2 + v2

�
) +M2

X

1

CCCCCCA
(4)

where MZSM is the mass of the Z boson in the SM. We can consider the vanishing

(1,1) element to be the mass of the photon eigenstate Aµ. Furthermore, according

to Eqs. (2) and (3), the remaining 3⇥3 matrix formed by the non-vanishing ele-

ments above is diagonalized by the orthogonal matrix O. In particular, as shown in

Appendix A, one can parametrize O in terms of the angles as follows:

O =

0

BBB@

c c� � s✓s�s �s c� � s✓s�c �c✓s�

c s� + s✓c�s �s s� + s✓c�c c✓c�

�c✓s �c✓c s✓

1

CCCA
, (5)

where sx and cx stand for sine and cosine with the rotation angle x = ✓, ,�, respec-

tively. Three rotation angles can be represented as

tan(�) =
(g2

H
v2
�
� 2M2

Z3
)vMZSM

gH [(v2 � v2
�
)M2

Z3
+ v2

�
(MZSM)2]

, (6)

tan(✓) =
g2
H
[v2

�
(MZSM)

2
� (v2 + v2

�
)M2

Z3
] cos�+ 4M2

Z3
[M2

Z3
� (MZSM)

2
] cos�

2gHgX [(v2 � v2
�
)M2

Z3
+ v2

�
(MZSM)2]

, (7)

Set MY = 0!

6

and

cot( ) =
gH(M2

Z1
�M2

X
� 2g2

X
v2
�
)

gX(g2Hv
2

�
� 2M2

Z1
)

c✓
s�

� s✓ cot�. (8)

After the rotation matrix O is found, the Zi mass eigenstates where i runs from

1 to 3 for flavor indices are given by

(Z1, Z2, Z3)
T
= O

T
· (ZSM ,W 03, X)

T . (9)

The composition of the Zi mass eigenstate ZSM , W 03 and X is given by O
2

1i
, O2

2i
,

and O
2

3i
, respectively.

C. Neutral current interactions of the G2HDM

The part of the Lagrangian that contains the interaction of the Zi with visible

matter is

LZineutral = gM
X

f

3X

i=1

f̄�µ
h⇣

v(i)
f

� �5a
(i)

f

⌘
Zµ

i

i
f (10)

where gM =

p
g2 + g02/2. The v(i)

f
and a(i)

f
factors are given by

v(i)
f

=
�
cWO

4⇥4

2,i+1
� sWO

4⇥4

1,i+1

�
T 3

f
+ 2QfsWO

4⇥4

1,i+1

+
1p

g2 + g02

�
XRgXO

4⇥4

4,i+1
+ T 3H

fR
gHO

4⇥4

3,i+1

�
, (11)

a(i)
f

=
�
cWO

4⇥4

2,i+1
� sWO

4⇥4

1,i+1

�
T 3

f

�
1p

g2 + g02

�
XRgXO

4⇥4

4,i+1
+ T 3H

fR
gHO

4⇥4

3,i+1

�
. (12)

*** Sming: I changed j ! i! *** Here T 3

f
is the SU(2)L isospin charge

and Qf is the electric charge in units of eSM , they can be related to the U(1)Y
charge by T 3

= Q � Y . The charges due to the new gauge symmetries are XR as

the U(1)X charge of the corresponding fR and T 3H

fR
is the SU(2)H analogous of the

(γ, ZSM, W′�3, X)

Neutral Gauge Bosons Z1,Z2,Z3 (II)
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There are SU (2)H gauge bosons, W ′(p,m) and W ′3, and
theU (1)X gauge boson X , apart from the SM ones. Due to the
symmetry breaking pattern,W ′(p,m) will not mix with the SM
counterparts butW ′3 and X mix with the SM SU (2)L W 3 and
U (1)Y Y gauge boson. In this setup, besides the SM massless
photon corresponding to the unbroken generator Q = T 3

L +
Y , there exists a massless dark photon corresponding to the
unbroken generator QD = 4 cos2 θwT 3

L − 4 sin2 θwY+2T 3
H+

X . Here T 3
L (T 3

H ) is the third generator of SU (2)L (SU (2)H ),
Y (X) is theU (1)Y (U (1)X ) generator, and θw is the Weinberg
angle. Such a massless dark photon could be cosmologically
problematic. To circumvent the problem, one can resort to
the Stueckelberg mechanism to give a mass to the U (1)X
gauge boson as in [44– 47]. One could take this mass to be
large enough so that X is decoupled from the particle spectra.
Another way out is to treat U (1)X as a global symmetry as
was proposed in [48] and adopted in [14] as well. We will
follow the same strategy in what follows.

In this case, after diagonalizing the mass matrix of Y ,
W 3 and W ′3, one obtains massless γ , massive Z and Z ′.
Furthermore, the Z – Z ′ mixing is constrained to be of order
10− 3 for TeV Z ′ because of the electroweak precision mea-
surements [49]. As a consequence, impacts of the mixing
are numerically negligible and will be ignored. The resulting
SU (2)H gauge boson mass spectrum is

m2
W ′ (p,m) =

1
4
g2
H

(
v2 + v2

# + 4v2
$

)
,

m2
Z ′ = 1

4
g2
H

(
v2 + v2

#

)
, (3)

where (v/
√

2, v#/
√

2, − v$) = (⟨H0
1 ⟩, ⟨#2⟩, ⟨$3⟩). Note

that W ′ (p,m) is always heavier than Z ′ in G2HDM.
As the SM right-handed fermions as well as the new

fermions are charged under SU (2)H , they couple to the
W ′ (p,m) and Z ′ bosons. The relevant gauge interactions with-
out the Z – Z ′ mixing read

L ⊃ L(W )+ L(γ )+ $L. (4)

Here L(W ) and L(γ ) refer to the charged current mediated
by the W boson and the electric current by the photon γ ,
respectively,

L(γ ) =
∑

f

Q f e f̄ γ µ f Aµ ,

L(W ) = g√
2

(
νLγ µeL + u Lγ µdL

)
W+

µ + H.c., (5)

where Q f is the corresponding fermion electric charge in
units of e. $L represents (electrically) neutral current inter-
actions of the massive bosons, Z , Z ′ and W ′(p,m) (for demon-
stration, only the lepton sector is shown, but it is straightfor-
ward to include the quark sector):

$L = L(Z)+ L(Z ′)+ L(W ′(p,m)), (6)

where

L(Z) = g
cos θw

JµZ Zµ,

L(Z ′) = gH JµW ′3 Z
′
µ,

L(W ′(p,m)) = 1√
2
gH

(
JµW ′mW ′p

µ + H.c.
)
, (7)

and

JµZ =
∑

f=e,ν

(
fLγ µ(T 3

L − Q f sin2 θw) fL

+ fRγ µ(− Q f sin2 θw) fR
)
+

∑

e

eHR γ µ(sin2 θw)eHR ,

JµW ′3 =
∑

fR=NR ,ER

fRγ µ(T 3
H ) fR,

JµW ′m =
∑

e

(
eHR γ µeR + νeRγ µνH

eR

)
. (8)

The current interactions inL(W ′(p,m)) andL(Z ′)will dictate
how W ′ (p,m) and Z ′ decay into SM and heavy fermions, and
they determine which final states one should look into for
collider searches.

3 Methodology

To simulate the total cross sections and various distributions
for the relevant processes in the colliders, we will follow
the standard protocol well established by many collider phe-
nomenologists. We use FeynRules [50] to build up the
model files for G2HDM and pass it to Madgraph5 [51] for
the matrix element calculation and event generation. We sim-
ulate parton showering by using Pythia8.1 [52], and we
employ Delphes3 [53] for detector simulations. Finally,
the package MadAnalysis5 [54,55] is used to analyze the
simulation data.

In the G2HDM, apart from the extra gauge bosonsW ′(p,m)

and Z ′, additional heavy fermions have to be included to
attain gauge invariant Yukawa couplings as explained above.
To simplify the analysis, we assume two universal masses for
the heavy fermions, one for leptons and the other for quarks.
As a result, there are five relevant mass scales in our analysis,
namely the masses of the dark matter particle H0∗

2 , the heavy
leptons LH = (eH , µH , τ H ) and νH = (νH

e , νH
µ , νH

τ ), the
heavy quarks QH = (u H , d H , cH , sH , t H ,bH ), and the two
heavy gauge bosons W ′(p,m) and Z ′. In addition, the new
charged fermions have to be heavier than 100 GeV, a con-
straint inferred from the combined analysis of the LEP2 run
data by the four LEP collaborations [56]. We will study the

123

Dark W′�(p,m)

• Unlike LR model, Wʹ doesn’t mix with SU(2)L W!

• All three VEVs entered in the Wʹ mass!

• Candidate for dark matter in G2HDM. (In progress)
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Fig. 1 The Z ′ constraints for G2HDM inferred from the latest ATLAS
and CMS 13TeV results. The solid lines denote Spectrum A, while the
dashed lines refer to Spectrum B. The main differences between the
two scenarios are the branching fractions of Z ′ into the SM quarks and
leptons, as shown in Table 2

rather convoluted. As mentioned earlier, to simplify the anal-
ysis in this work, we neglect scalar final states and instead
focus on the fermion channels at which the corresponding
partial decay widths are simply fixed by the SU (2)H gauge
coupling as well as the new heavy fermion masses.

4 Z′ searches at the LHC

In this section, we first present the Z ′ constraints, derived
from the ATLAS and CMS dijet and dilepton searches based
on the 13 TeV data. Then we propose potential Z ′ signatures
from exotic decay searches which have smaller cross sections
than direct Z ′ searches but can be explored at the 14 TeV HL-
LHC. In Sect. 5, we will investigate the W ′(p,m) searches at a
future proton–proton 100 TeV collider. As mentioned before,
unlike Z ′, which can be singly created and probed directly by
dilepton and dijet searches at the LHC, the heavier W ′(p,m)

must be produced pair-wise in the light of the SU (2)H gauge
symmetry and therefore are less constrained.

4.1 Constraints on Z ′ from current dilepton and dijet
searches

In G2HDM, Z ′ is always lighter than W ′ and can be directly
probed by resonance searches as mentioned above. Due to
the null results of the direct searches, very stringent limits are
imposed on any model of Z ′ that directly couples to the SM
fermions. For instance, the sequential SM with Z ′ having the
same couplings to SM fermions as the SM Z gauge boson is
constrained to be heavier than 4 TeV [27,28].

Recently, the ATLAS and CMS collaborations have
reported their updated results of Z ′ resonance searches for
channels of dilepton [27,28], dijet [25,29], b-quark pair [30],
t-quark pair [31], and other bosonic final states [32–34] at
13 TeV. In the light of the irreducible QCD background at
the LHC, the dilepton channel is the cleanest one to recon-
struct the invariant mass of the final state particles and yields
the most stringent constraints. In this work, we consider two
major type of constraints: dilepton and dijet channels. We
calculate the cross sections of pp → Z ′ → l+l−/j j with
the help of Madgraph5 [51] and compare them with the
latest constraints from the LHC.

In Fig. 1, we present the exclusion regions of gH as a func-
tion of mZ ′ . The solid lines correspond to Spectrum A and
the dashed lines denote Spectrum B. The major discrepan-
cies between the two scenarios are the branching ratios of the
Z ′ decay into SM quarks and leptons, as shown in Table 2.
Compared with the previous constraints [14] obtained from
the 8 TeV data, the improvement is about a factor of 2 in the
region of 1.5 < mZ ′ < 2.25 TeV. In addition, thanks to the
higher center-of-mass energy

√
s (8 → 13 TeV), the bounds

for mZ ′ > 2.25 TeV are significantly improved and become
stronger than the LEP limits based on the σ (e+e−→ l+l−)
measurements [14].

We note that the constraints on the Z ′ mass in G2HDM is
less stringent than the Z ′ in LRSM or LRTHM where a dis-
crete symmetry is imposed to equate the new gauge coupling
to the SM SU (2)L one. The price to pay for G2HDM is, of
course, a smaller gH .

4.2 Z ′ exotic decays into heavy fermions

We now move on to the Z ′ exotic decays which can shed light
on the existence of exotic fermions in G2HDM. As noted
before, the scalar decay channels of Z ′ depend on details of
the complicated scalar potential and hence are ignored in this
work. On the other hand, the heavy fermion channels, which
are governed by gH and the heavy fermion masses only, can
easily be addressed.

Thinking forwardly and optimistically, one can envisage
that a Z ′ will be discovered by the direct searches of dilepton
and dijet channels in the foreseeable future at HL-LHC. If so,
the heavy fermions in G2HDM can also be probed via Z ′ on-
shell decays if kinematically allowed. In order to perform a
more general study for this purpose, we will temporarily relax
the mass relations among the heavy fermions, Z ′, and DM for
both Spectrum A and Spectrum B mentioned in Sect. 3. To be
specific, in this section and only in this section, we will relax
the fixed mass relation in Spectrum A to 2mLH < mZ ′ <

2mQH , and for Spectrum B we will assume 2m(LH ,QH ) <

mZ ′ instead. Besides, as long as the mass differences between
the heavy fermions and DM are large enough, the actual value
of mDM will not have a significant impact on the analysis.
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Table 2 Branching ratios for different decay modes of Z ′ with 1.5 ≤ mZ ′ ≤ 3 TeV

Z ′ BR(QQ)(%) BR(L+L−) (%) BR(νν) (%) BR(QH QH ) (%) BR(LH LH ) (%) BR(νH νH ) (%)

Spectrum A 66.52 11.13 11.13 – 5.61 5.61

Spectrum B 49.84 8.31 8.31 25.14 4.20 4.20

Here Q denotes 6 quark flavors (u , d , c, s, t,b) and L (ν) represents 3 lepton flavors (e (νe), µ (νµ), τ (ντ ))

Table 3 Branching ratios for
different decay modes of
W ′(p,m) with
1.5 ≤ mW ′(p,m) ≤ 3 TeV

W ′(p,m) (%) BR(QH Q, QQH ) (%) BR(LH L, LLH ) (%) BR(νH ν, ννH ) (%)

Spectrum A – 50 50

Spectrum B 74.96 12.52 12.52

following two benchmark mass spectra for the new fermions,
while the new gauge bosons are always assumed to be heav-
ier than 1.5 TeV, so that the gauge coupling gH is not too
small.

Spectrum A Heavy and decoupled new quark scenario.
The new quarks QH are chosen to be heavier than Z ′.
Specifically we take mQH = mZ ′ + 1 TeV, and thus
channels of the new quarks will not be considered in
the Z ′-resonance searches. On the other hand, the new
leptons LH (νH ) are assumed to be lighter than Z ′ with
mLH (νH ) = 2mD in which mD is the dark matter mass.
Hence LH (νH ) can be pair produced by Z ′ on-shell
decays. In order to well separate the spectrum, we fix the
mass ratio between DM and the SU (2)H gauge bosons:
mZ ′ ≃ mW ′(p,m) = 5mD .
Spectrum B Light new quark scenario.
For completeness, we also study a scenario with lighter
new quarks where the new heavy quarks and leptons are
degenerate: mQH = mLH (νH ) = 2mD , while the same
DM-Z ′(W ′(p,m)) mass ratio mZ ′ ≃ mW ′(p,m) = 5mD as
in Spectrum A is assumed.

To achieve mZ ′ ≃ mW ′ , one needs v# ! 3v$ ≫ v based
on Eq. (3). Note that this setup is different from the previ-
ous work [14], where v$ ! v# ≫ v was assumed. Fur-
thermore, for simplicity decays of the heavy gauge bosons
into scalar Higgs pairs are presumed to be either kinemat-
ically forbidden or negligible. It is justified since all of the
new scalars except for DM can be heavier than W ′ and Z ′

as displayed in the last table in Appendix B. Moreover, the
coupling between the longitudinal components of W ′ and Z ′

and the DM can in principle be made small by varying the
parameters in the scalar potential. In this way, the transverse
components (whose coupling to DM is simply gH ) govern
decays of W ′ and Z ′ into DM particles but this contribution
to the decays is subleading compared to those of the heavy
fermions in the final states, given the larger number of the
new fermions in the model.

In both scenarios, the new heavy fermions are kinemati-
cally allowed to be produced by either Z ′ or W ′(p,m) decays.
As a result, we propose searches for the new fermions as
follows.2

• For Spectrum A, the heavy charged leptons can be pro-
duced via pp → Z ′ → LH LH and pp → W ′pW ′m →
LH LLLH , and the corresponding final states will be (1)
2l +!ET , (2) 2τ +!ET , (3) 4l +!ET , (4) 2l+2τ +!ET , and
(5) 4τ +!ET .

• For Spectrum B, the new quark pairs can also be on-shell
produced through pp → Z ′ → QH QH , and thus the
final states (1) 2 j+!ET , (2) 2b+!ET , and (3) 2t+!ET will
be considered. These processes are relevant to the dijet
plus missing transverse energy searches for Z ′. Needless
to say, the continuum contributions from QCD to the new
quark pair production should be taken into account.

In Tables 2 and 3, we list the branching ratios for the Z ′

and W ′(p,m) decays, respectively, in the two scenarios.3 The
QH QH final state in the Z ′ decay is kinematically allowed
in Spectrum B, resulting in smaller partial decay widths into
the SM QQ and L+L− final states compared to Spectrum
A. On the other hand, since W ′(p,m) do not decay into SM
fermion pairs, the opening of QH Q + QQH final state in
Spectrum B affects only the other exotic leptonic channels.
These exotic decays can be phenomenologically interesting
as we will see in the next section.

Note that Z ′ and W ′(p,m) can also decay into scalars, H ,
#H and $H , which are charged under SU (2)H . The branch-
ing fractions, however, depend on the scalar mixing parame-
ters in the scalar potential [14] which can make the analysis

2 The symbol l refers to the first and second generation charged lep-
tons, e and µ, as well as their antiparticles, while τ denotes the third
generation ones. Similarly, j refers to a light quark/antiquark jet of the
first and second generations, and b and t are the bottom/anti-bottom and
top/anti-top jets, respectively.
3 In fact, the branching ratio for each decay mode is insensitive to mZ ′

and mW ′(p,m) in the region of interest from 1.5 to 3 TeV.
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Table 2 Branching ratios for different decay modes of Z ′ with 1.5 ≤ mZ ′ ≤ 3 TeV

Z ′ BR(QQ)(%) BR(L+L−) (%) BR(νν) (%) BR(QH QH ) (%) BR(LH LH ) (%) BR(νH νH ) (%)

Spectrum A 66.52 11.13 11.13 – 5.61 5.61

Spectrum B 49.84 8.31 8.31 25.14 4.20 4.20

Here Q denotes 6 quark flavors (u , d , c, s, t,b) and L (ν) represents 3 lepton flavors (e (νe), µ (νµ), τ (ντ ))

Table 3 Branching ratios for
different decay modes of
W ′(p,m) with
1.5 ≤ mW ′(p,m) ≤ 3 TeV

W ′(p,m) (%) BR(QH Q, QQH ) (%) BR(LH L, LLH ) (%) BR(νH ν, ννH ) (%)

Spectrum A – 50 50

Spectrum B 74.96 12.52 12.52

following two benchmark mass spectra for the new fermions,
while the new gauge bosons are always assumed to be heav-
ier than 1.5 TeV, so that the gauge coupling gH is not too
small.

Spectrum A Heavy and decoupled new quark scenario.
The new quarks QH are chosen to be heavier than Z ′.
Specifically we take mQH = mZ ′ + 1 TeV, and thus
channels of the new quarks will not be considered in
the Z ′-resonance searches. On the other hand, the new
leptons LH (νH ) are assumed to be lighter than Z ′ with
mLH (νH ) = 2mD in which mD is the dark matter mass.
Hence LH (νH ) can be pair produced by Z ′ on-shell
decays. In order to well separate the spectrum, we fix the
mass ratio between DM and the SU (2)H gauge bosons:
mZ ′ ≃ mW ′(p,m) = 5mD .
Spectrum B Light new quark scenario.
For completeness, we also study a scenario with lighter
new quarks where the new heavy quarks and leptons are
degenerate: mQH = mLH (νH ) = 2mD , while the same
DM-Z ′(W ′(p,m)) mass ratio mZ ′ ≃ mW ′(p,m) = 5mD as
in Spectrum A is assumed.

To achieve mZ ′ ≃ mW ′ , one needs v# ! 3v$ ≫ v based
on Eq. (3). Note that this setup is different from the previ-
ous work [14], where v$ ! v# ≫ v was assumed. Fur-
thermore, for simplicity decays of the heavy gauge bosons
into scalar Higgs pairs are presumed to be either kinemat-
ically forbidden or negligible. It is justified since all of the
new scalars except for DM can be heavier than W ′ and Z ′

as displayed in the last table in Appendix B. Moreover, the
coupling between the longitudinal components of W ′ and Z ′

and the DM can in principle be made small by varying the
parameters in the scalar potential. In this way, the transverse
components (whose coupling to DM is simply gH ) govern
decays of W ′ and Z ′ into DM particles but this contribution
to the decays is subleading compared to those of the heavy
fermions in the final states, given the larger number of the
new fermions in the model.

In both scenarios, the new heavy fermions are kinemati-
cally allowed to be produced by either Z ′ or W ′(p,m) decays.
As a result, we propose searches for the new fermions as
follows.2

• For Spectrum A, the heavy charged leptons can be pro-
duced via pp → Z ′ → LH LH and pp → W ′pW ′m →
LH LLLH , and the corresponding final states will be (1)
2l +!ET , (2) 2τ +!ET , (3) 4l +!ET , (4) 2l+2τ +!ET , and
(5) 4τ +!ET .

• For Spectrum B, the new quark pairs can also be on-shell
produced through pp → Z ′ → QH QH , and thus the
final states (1) 2 j+!ET , (2) 2b+!ET , and (3) 2t+!ET will
be considered. These processes are relevant to the dijet
plus missing transverse energy searches for Z ′. Needless
to say, the continuum contributions from QCD to the new
quark pair production should be taken into account.

In Tables 2 and 3, we list the branching ratios for the Z ′

and W ′(p,m) decays, respectively, in the two scenarios.3 The
QH QH final state in the Z ′ decay is kinematically allowed
in Spectrum B, resulting in smaller partial decay widths into
the SM QQ and L+L− final states compared to Spectrum
A. On the other hand, since W ′(p,m) do not decay into SM
fermion pairs, the opening of QH Q + QQH final state in
Spectrum B affects only the other exotic leptonic channels.
These exotic decays can be phenomenologically interesting
as we will see in the next section.

Note that Z ′ and W ′(p,m) can also decay into scalars, H ,
#H and $H , which are charged under SU (2)H . The branch-
ing fractions, however, depend on the scalar mixing parame-
ters in the scalar potential [14] which can make the analysis

2 The symbol l refers to the first and second generation charged lep-
tons, e and µ, as well as their antiparticles, while τ denotes the third
generation ones. Similarly, j refers to a light quark/antiquark jet of the
first and second generations, and b and t are the bottom/anti-bottom and
top/anti-top jets, respectively.
3 In fact, the branching ratio for each decay mode is insensitive to mZ ′

and mW ′(p,m) in the region of interest from 1.5 to 3 TeV.
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Table 2 Branching ratios for different decay modes of Z ′ with 1.5 ≤ mZ ′ ≤ 3 TeV
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Here Q denotes 6 quark flavors (u , d , c, s, t,b) and L (ν) represents 3 lepton flavors (e (νe), µ (νµ), τ (ντ ))

Table 3 Branching ratios for
different decay modes of
W ′(p,m) with
1.5 ≤ mW ′(p,m) ≤ 3 TeV

W ′(p,m) (%) BR(QH Q, QQH ) (%) BR(LH L, LLH ) (%) BR(νH ν, ννH ) (%)
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produced through pp → Z ′ → QH QH , and thus the
final states (1) 2 j+!ET , (2) 2b+!ET , and (3) 2t+!ET will
be considered. These processes are relevant to the dijet
plus missing transverse energy searches for Z ′. Needless
to say, the continuum contributions from QCD to the new
quark pair production should be taken into account.

In Tables 2 and 3, we list the branching ratios for the Z ′

and W ′(p,m) decays, respectively, in the two scenarios.3 The
QH QH final state in the Z ′ decay is kinematically allowed
in Spectrum B, resulting in smaller partial decay widths into
the SM QQ and L+L− final states compared to Spectrum
A. On the other hand, since W ′(p,m) do not decay into SM
fermion pairs, the opening of QH Q + QQH final state in
Spectrum B affects only the other exotic leptonic channels.
These exotic decays can be phenomenologically interesting
as we will see in the next section.

Note that Z ′ and W ′(p,m) can also decay into scalars, H ,
#H and $H , which are charged under SU (2)H . The branch-
ing fractions, however, depend on the scalar mixing parame-
ters in the scalar potential [14] which can make the analysis

2 The symbol l refers to the first and second generation charged lep-
tons, e and µ, as well as their antiparticles, while τ denotes the third
generation ones. Similarly, j refers to a light quark/antiquark jet of the
first and second generations, and b and t are the bottom/anti-bottom and
top/anti-top jets, respectively.
3 In fact, the branching ratio for each decay mode is insensitive to mZ ′

and mW ′(p,m) in the region of interest from 1.5 to 3 TeV.
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3. Constraints from Electroweak Zjj production at LHC
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Dark Matter in G2HDM

• DM Candidates:

• Accidental Z2:

Stability: Wei-chih’s operator analysis 

{D, Δ̃, H±, W′ �(p,m), νH, lH, qH}are odd .

{D, νH, W′�(p,m)}

Yu-Xiang Lin, Raymundo Ramos, Chrisna Seyto Nugroho, et al. work in progress.

{All SM particles, h2, h3, Zʹ, Zʹʹ are even.}

See Sming Tsai’s talk for details.



Theoretical and Phenomenological  
Constraints (Scalar Sector)

• Vacuum Stability (VS)  
- Scalar potential should be bounded from below 

• Perturbative Unitarity (PU) 
- Scattering amplitudes in the scalar sector 

• Higgs Physics (HP) 
- Diphoton signal strength of  the 128 GeV Higgs

Reference:  
Adelssalem Arhrib, Wei-Chih Huang, Raymundo Ramos, Y. L. Sming Tsai, TCY,  
arXiv:1806.05632, PRD98(2018) no.9, 095006



Scalar Potential (Quartic terms) 

• Due to gauge 
symmetry, the 
potential depends only 
on these 
combinations. 

• The quartic terms in 
the potential is then a 
quadratic form.

the lightest. In this work, we will assume D is the DM
candidate. In our numerical scan, detailed in later sec-
tions, we will check to make sure D must be lighter than
W0ðp;m Þ, H# and all heavy fermions.
The final block is 4 × 4 and diagonal with

m 2
H# ¼ MHΔvΔ −

1

2
λ0Hv

2 þ 1

2
λ0HΦv

2
Φ; ð22Þ

for the physical charged Higgs H#, and

m 2
G# ¼ m 2

G0 ¼ m 2
G0

H
¼ 0; ð23Þ

for the four Goldstone boson fields G#, G0 and G0
H. Note

that we have used the minimization conditions Eqs. (14)–
(16) to simplify various matrix elements of the above mass
matrices. If the charged Higgs mass is close to the DM
mass, we should include the corresponding coannihilation
contributions as well.
The six Goldstone particles G#, G0, G0

H and G̃p;m will
be absorbed by the longitudinal components of the
massive gauge bosons W#, Z, Z0 and W0ðp;m Þ. It implies
that there are two unbroken generators and thus two
massless gauge particles left over after spontaneous
symmetry breaking. One is naturally identified as the
photon while the other one could be interpreted as a dark
photon γD or another neutral gauge boson Z00. To give a
mass to the γD or Z00, one can either use the Stueckelberg
mechanism [23–26] or introduce yet another Higgs field
ΦX solely charged under Uð1ÞX to break one of the
remaining two unbroken generators. Depending on the
magnitude of the Stueckelberg mass MX or the VEV
hΦXi, one can identify the extra neutral gauge boson as
either γD or Z00. Only one unbroken generator for the
massless photon should remain at the end of this game.
The physical neutral gauge bosons γ, Z, Z0 and γD=Z00 are
in principle mixtures of the gauge field components W3,
B, W03 and X [13].
After symmetry breaking, by scrutinizing the whole

Lagrangian, one can discover that an effective Z2 parity
can be assigned consistently to the physical particle
spectrum of the model: All the SM particles (with h1
identified as the 125 GeV Higgs observed at the LHC), Z0,
γD=Z00, h2 and h3 are even, while D , Δ̃,H#,W0ðp;m Þ as well
as all heavy fermions fH are odd under this accidental
discrete symmetry. As mentioned above, we will assume D
is the lightest odd particle and can serve as a DM candidate
in this work.

III. THEORETICAL CONSTRAINTS

In this section, we will discuss the theoretical constraints
arising from tree-level vacuum stability (VS) and pertur-
bative unitarity (PU) on the scalar sector in G2HDM.

A. Vacuum stability

For the stability of the vacuum we have to examine the
scalar potential at large-field values and make sure it is
bounded from below. Therefore it is sufficient to consider
all the quartic terms in the scalar potential which are

V4 ¼ þλHðH†HÞ2 þ λ0Hð−H
†
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†
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HÞ þ λΦΔðΦ†

HΦHÞTrðΔ2
HÞ: ð24Þ

Following the methods in [27,28], we introduce the
following basis (x, y, z) and two ratios ξ and η, defined as

x≡H†H; ð25Þ

y≡Φ†
HΦH; ð26Þ

z≡ TrðΔ†
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and
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ðH†HÞ2
: ð29Þ

One can show that the ratios satisfy 0 ≤ ξ ≤ 1 and
−1=4 ≤ η ≤ 0. While η is always above −1=4, the actual
lower bound and its effects will be discussed in more
detail below. To deduce the conditions for the potential
to be bounded from below, we rewrite the quartic terms V4

in terms of x, y and z with the ratio parameters ξ and η.
That is

V4 ¼ ð x y z Þ ·Qðξ; ηÞ ·
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CCA; ð31Þ

and λ̃HðηÞ≡ λH þ ηλ0H, λ̃HΦðξÞ≡ λHΦ þ ξλ0HΦ.
According to [29,30], using the Sylvester’s criterion

or requiring semipositive definite eigenvalues of the
quadratic form Qðξ; ηÞ, albeit mathematically rigorous,
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the lightest. In this work, we will assume D is the DM
candidate. In our numerical scan, detailed in later sec-
tions, we will check to make sure D must be lighter than
W0ðp;m Þ, H# and all heavy fermions.
The final block is 4 × 4 and diagonal with

m 2
H# ¼ MHΔvΔ −

1

2
λ0Hv

2 þ 1

2
λ0HΦv

2
Φ; ð22Þ

for the physical charged Higgs H#, and

m 2
G# ¼ m 2

G0 ¼ m 2
G0

H
¼ 0; ð23Þ

for the four Goldstone boson fields G#, G0 and G0
H. Note

that we have used the minimization conditions Eqs. (14)–
(16) to simplify various matrix elements of the above mass
matrices. If the charged Higgs mass is close to the DM
mass, we should include the corresponding coannihilation
contributions as well.
The six Goldstone particles G#, G0, G0

H and G̃p;m will
be absorbed by the longitudinal components of the
massive gauge bosons W#, Z, Z0 and W0ðp;m Þ. It implies
that there are two unbroken generators and thus two
massless gauge particles left over after spontaneous
symmetry breaking. One is naturally identified as the
photon while the other one could be interpreted as a dark
photon γD or another neutral gauge boson Z00. To give a
mass to the γD or Z00, one can either use the Stueckelberg
mechanism [23–26] or introduce yet another Higgs field
ΦX solely charged under Uð1ÞX to break one of the
remaining two unbroken generators. Depending on the
magnitude of the Stueckelberg mass MX or the VEV
hΦXi, one can identify the extra neutral gauge boson as
either γD or Z00. Only one unbroken generator for the
massless photon should remain at the end of this game.
The physical neutral gauge bosons γ, Z, Z0 and γD=Z00 are
in principle mixtures of the gauge field components W3,
B, W03 and X [13].
After symmetry breaking, by scrutinizing the whole

Lagrangian, one can discover that an effective Z2 parity
can be assigned consistently to the physical particle
spectrum of the model: All the SM particles (with h1
identified as the 125 GeV Higgs observed at the LHC), Z0,
γD=Z00, h2 and h3 are even, while D , Δ̃,H#,W0ðp;m Þ as well
as all heavy fermions fH are odd under this accidental
discrete symmetry. As mentioned above, we will assume D
is the lightest odd particle and can serve as a DM candidate
in this work.
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In this section, we will discuss the theoretical constraints
arising from tree-level vacuum stability (VS) and pertur-
bative unitarity (PU) on the scalar sector in G2HDM.

A. Vacuum stability

For the stability of the vacuum we have to examine the
scalar potential at large-field values and make sure it is
bounded from below. Therefore it is sufficient to consider
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the lightest. In this work, we will assume D is the DM
candidate. In our numerical scan, detailed in later sec-
tions, we will check to make sure D must be lighter than
W0ðp;m Þ, H# and all heavy fermions.
The final block is 4 × 4 and diagonal with

m 2
H# ¼ MHΔvΔ −
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for the physical charged Higgs H#, and

m 2
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H
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for the four Goldstone boson fields G#, G0 and G0
H. Note

that we have used the minimization conditions Eqs. (14)–
(16) to simplify various matrix elements of the above mass
matrices. If the charged Higgs mass is close to the DM
mass, we should include the corresponding coannihilation
contributions as well.
The six Goldstone particles G#, G0, G0

H and G̃p;m will
be absorbed by the longitudinal components of the
massive gauge bosons W#, Z, Z0 and W0ðp;m Þ. It implies
that there are two unbroken generators and thus two
massless gauge particles left over after spontaneous
symmetry breaking. One is naturally identified as the
photon while the other one could be interpreted as a dark
photon γD or another neutral gauge boson Z00. To give a
mass to the γD or Z00, one can either use the Stueckelberg
mechanism [23–26] or introduce yet another Higgs field
ΦX solely charged under Uð1ÞX to break one of the
remaining two unbroken generators. Depending on the
magnitude of the Stueckelberg mass MX or the VEV
hΦXi, one can identify the extra neutral gauge boson as
either γD or Z00. Only one unbroken generator for the
massless photon should remain at the end of this game.
The physical neutral gauge bosons γ, Z, Z0 and γD=Z00 are
in principle mixtures of the gauge field components W3,
B, W03 and X [13].
After symmetry breaking, by scrutinizing the whole

Lagrangian, one can discover that an effective Z2 parity
can be assigned consistently to the physical particle
spectrum of the model: All the SM particles (with h1
identified as the 125 GeV Higgs observed at the LHC), Z0,
γD=Z00, h2 and h3 are even, while D , Δ̃,H#,W0ðp;m Þ as well
as all heavy fermions fH are odd under this accidental
discrete symmetry. As mentioned above, we will assume D
is the lightest odd particle and can serve as a DM candidate
in this work.
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bative unitarity (PU) on the scalar sector in G2HDM.
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the lightest. In this work, we will assume D is the DM
candidate. In our numerical scan, detailed in later sec-
tions, we will check to make sure D must be lighter than
W0ðp;m Þ, H# and all heavy fermions.
The final block is 4 × 4 and diagonal with

m 2
H# ¼ MHΔvΔ −
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for the physical charged Higgs H#, and

m 2
G# ¼ m 2

G0 ¼ m 2
G0

H
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for the four Goldstone boson fields G#, G0 and G0
H. Note

that we have used the minimization conditions Eqs. (14)–
(16) to simplify various matrix elements of the above mass
matrices. If the charged Higgs mass is close to the DM
mass, we should include the corresponding coannihilation
contributions as well.
The six Goldstone particles G#, G0, G0

H and G̃p;m will
be absorbed by the longitudinal components of the
massive gauge bosons W#, Z, Z0 and W0ðp;m Þ. It implies
that there are two unbroken generators and thus two
massless gauge particles left over after spontaneous
symmetry breaking. One is naturally identified as the
photon while the other one could be interpreted as a dark
photon γD or another neutral gauge boson Z00. To give a
mass to the γD or Z00, one can either use the Stueckelberg
mechanism [23–26] or introduce yet another Higgs field
ΦX solely charged under Uð1ÞX to break one of the
remaining two unbroken generators. Depending on the
magnitude of the Stueckelberg mass MX or the VEV
hΦXi, one can identify the extra neutral gauge boson as
either γD or Z00. Only one unbroken generator for the
massless photon should remain at the end of this game.
The physical neutral gauge bosons γ, Z, Z0 and γD=Z00 are
in principle mixtures of the gauge field components W3,
B, W03 and X [13].
After symmetry breaking, by scrutinizing the whole

Lagrangian, one can discover that an effective Z2 parity
can be assigned consistently to the physical particle
spectrum of the model: All the SM particles (with h1
identified as the 125 GeV Higgs observed at the LHC), Z0,
γD=Z00, h2 and h3 are even, while D , Δ̃,H#,W0ðp;m Þ as well
as all heavy fermions fH are odd under this accidental
discrete symmetry. As mentioned above, we will assume D
is the lightest odd particle and can serve as a DM candidate
in this work.

III. THEORETICAL CONSTRAINTS

In this section, we will discuss the theoretical constraints
arising from tree-level vacuum stability (VS) and pertur-
bative unitarity (PU) on the scalar sector in G2HDM.

A. Vacuum stability

For the stability of the vacuum we have to examine the
scalar potential at large-field values and make sure it is
bounded from below. Therefore it is sufficient to consider
all the quartic terms in the scalar potential which are

V4 ¼ þλHðH†HÞ2 þ λ0Hð−H
†
1H1H

†
2H2 þH†

1H2H
†
2H1Þ

þ λΦðΦ†
HΦHÞ2 þ λΔðTrðΔ2

HÞÞ2

þ λHΦðH†HÞðΦ†
HΦHÞ þ λ0HΦðH†ΦHÞðΦ†

HHÞ

þ λHΔðH†HÞTrðΔ2
HÞ þ λΦΔðΦ†

HΦHÞTrðΔ2
HÞ: ð24Þ

Following the methods in [27,28], we introduce the
following basis (x, y, z) and two ratios ξ and η, defined as

x≡H†H; ð25Þ

y≡Φ†
HΦH; ð26Þ

z≡ TrðΔ†
HΔHÞ; ð27Þ

and

ξ≡ ðH†ΦHÞðΦ†
HHÞ

ðH†HÞðΦ†
HΦHÞ

; ð28Þ

η≡ ð−H†
1H1H

†
2H2 þH†

1H2H
†
2H1Þ

ðH†HÞ2
: ð29Þ

One can show that the ratios satisfy 0 ≤ ξ ≤ 1 and
−1=4 ≤ η ≤ 0. While η is always above −1=4, the actual
lower bound and its effects will be discussed in more
detail below. To deduce the conditions for the potential
to be bounded from below, we rewrite the quartic terms V4

in terms of x, y and z with the ratio parameters ξ and η.
That is

V4 ¼ ð x y z Þ ·Qðξ; ηÞ ·

0

B@
x

y

z

1

CA; ð30Þ

with

Qðξ; ηÞ ¼

0

BB@

λ̃HðηÞ 1
2 λ̃HΦðξÞ 1

2 λHΔ
1
2 λ̃HΦðξÞ λΦ 1

2 λΦΔ
1
2 λHΔ

1
2 λΦΔ λΔ

1

CCA; ð31Þ

and λ̃HðηÞ≡ λH þ ηλ0H, λ̃HΦðξÞ≡ λHΦ þ ξλ0HΦ.
According to [29,30], using the Sylvester’s criterion

or requiring semipositive definite eigenvalues of the
quadratic form Qðξ; ηÞ, albeit mathematically rigorous,
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0 ≤ ξ ≤ 1, −
1
4

≤ η ≤ 0, η ≥ ξ(ξ − 1)



Copositivity

overly constrain the parameter space in this case.
Instead, the notion of copositivity (conditionally pos-
itive) criteria was proposed for vacuum stability con-
ditions. This is because the Sylvester’s criterion or
positive semidefinite requirement applies to the case
that the basis (x, y, z) can be either positive or negative,
whereas copositivity is applicable to the situation of
positive (or non-negative) (x, y, z) only. As our x, y and
z are the square of the scalar fields and thus non-
negative, we will use the copositivity criteria accord-
ingly.7 The copositivity criteria for the 3 × 3 symmetric
matrix Qðξ; ηÞ are [29,30]
(A)

λ̃HðηÞ ≥ 0; λΦ ≥ 0; λΔ ≥ 0; ð32Þ

(B)

ΛHΦðξ; ηÞ≡ λ̃HΦðξÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΦ

q
≥ 0;

ΛHΔðηÞ≡ λHΔ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΔ

q
≥ 0;

ΛΦΔ ≡ λΦΔ þ 2
ffiffiffiffiffiffiffiffiffiffi
λΦλΔ

p
≥ 0; ð33Þ

(C)

ΛHΦΔðξ; ηÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞλΦλΔ

q
þ 1

2
ðλ̃HΦðξÞ

ffiffiffiffiffi
λΔ

p

þ λHΔ
ffiffiffiffiffi
λΦ

p
þ λΦΔ

ffiffiffiffiffiffiffiffiffiffiffiffi
λ̃HðηÞ

q
Þ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΛHΦðξ; ηÞΛHΔðηÞΛΦΔ

p
≥ 0;

ð34Þ

with 0 ≤ ξ ≤ 1 and −1=4 ≤ η ≤ 0 as stated before. As
shown in [29], these copositivity criteria are necessary
and sufficient conditions for the quartic potential to be
bounded from below.
It is easy to see that for a given set of λ parameters, the

conditions above are monotonic functions of the ratios ξ
and η. If this last two ratios were perfectly independent, it
would be enough to check Eqs. (32)–(34) only at the
boundaries of said ratios. However, in our case there is a
correlation between the lower bound of η and the value of
ξ given by ηmin ¼ ξðξ − 1Þ. Since this constraint limits
the value of η to be well inside the rectangle defined by
the original boundaries mentioned above, checking the
corners of the rectangle would actually yield stronger
constraints on the scalar potential parameters. Instead, we
should check the boundary defined by ηmin ¼ ξðξ − 1Þ for
ΛHΦðξ; ηminÞ and ΛHΦΔðξ; ηminÞ.

We apply the method outlined in [32] to ΛHΦðξ; ηminÞ
and ΛHΦΔðξ; ηminÞ to find the actual conditions to apply.
In particular, we need to check the minimum values of
ΛHΦðξ; ηminÞ and ΛHΦΔðξ; ηminÞ, when necessary, in the
boundary mentioned above. Consider the first derivative of
ΛHΦðξ; ηminÞ with respect to ξ at the boundary defined by
ηmin ¼ ξðξ − 1Þ,

dΛHΦðξ; ηminÞ
dξ

¼ λ0HΦ þ λ0Hð2ξ − 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦðλ0Hðξ2 − ξÞ þ λHÞ

p

λ0Hðξ2 − ξÞ þ λH
:

ð35Þ

By solving dΛHΦðξ; ηminÞ=dξ ¼ 0, we find8 the
minimum ξ0

ξ0 ¼
1

2
−
λ0HΦ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−λ0H þ 4λH

λ0Hð4λ0HλΦ − ðλ0HΦÞ2Þ

s

: ð36Þ

For this ξ0 to be inside the (0,1) range, the absolute value of
the second term must be smaller than 1=2. This results in
the condition ðλ0HΦÞ2λH < ðλ0HÞ2λΦ. If ξ0 is not in the (0,1)
range we can skip the following checks.
If ξ0 is inside the (0,1) range we can check that it is

actually a minimum by finding the sign of the second
derivative, given by

d2ΛHΦðξ; ηminÞ
dξ2

¼
λ0H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λΦðλ0Hξðξ − 1Þ þ λHÞ

p
ð− λ0Hð2ξ−1Þ

2

2ðλ0Hξðξ−1ÞþλHÞ
þ 2Þ

λ0Hξðξ − 1Þ þ λH
:

ð37Þ

By substituting ξ ¼ ξ0 we find that the sign of the second
derivative is given by the sign of λ0H . If λ

0
H is negative, then

ΛHΦðξ; ξ2 − ξÞ is concave and it is enough to check the
boundary points ðξ; ηminÞ ¼ ð0; 0Þ and (1,0). But if λ0H is
positive then we have a minimum and we have to check
if ΛHΦðξ0; ξ20 − ξ0Þ ≥ 0.
In summary, to make sure that ΛHΦðξ; ηÞ ≥ 0 we have to

check:

ΛHΦðξ ¼ 0; η ¼ 0Þ ≥ 0 and ΛHΦðξ ¼ 1; η ¼ 0Þ ≥ 0;

ð38Þ

7For other rigorous method to deduce the necessary and
sufficient conditions for various scalar potentials in BSM to be
bounded from below, see e.g., [31].

8There are actually two solutions, differing only in the sign in
the second term. However, the solution with positive sign is a
solution only when ΛHΦðξ; ηminÞ is concave and ξ0 is actually a
maximum.

CONSISTENCY OF A GAUGED TWO-HIGGS-DOUBLET … PHYS. REV. D 98, 095006 (2018)

095006-7

References: 
A. Arhrib et. al., PRD 84, 095005 (2011) 
K. Kannike, EPJC 72, 2093 (2012); 76, 324 (2016); 78, 355(E) (2018)

0 ≤ ξ ≤ 1, −
1
4

≤ η ≤ 0; η ≥ ξ(ξ − 1)

λ̃H(η) = λH + ηλ′�H

λ̃HΦ(ξ) = λHΦ + ξλ′ �HΦ



Scalar Bosons Scattering Amplitudes
• 2 ➝ 2 processes

proposed for vacuum stability conditions. The main point is that Sylvester’s criterion or

semi-definite positivity requirement applies to the case that the basis x, y, z can be either

positive or negative, while copositivity requires x, y, z are all positive. Since our x, y, z are

squared of scalar fields, requirement of copositivity is more meaningful. The copositivity

criteria for the 3⇥ 3 symmetric matrix Q(⇠) is then

(A)

�H � 0 , �� � 0 , �� � 0 , (34)

(B)

⇤H�(⇠) = e�H�(⇠) + 2
p
�H�� � 0 ,

⇤H� = �H� + 2
p
�H�� � 0 , (35)

⇤�� = ��� + 2
p
���� � 0 ,

(C)

p
�H���� +

1

2

⇣
e�H�(⇠)

p
�� + �H�

p
�� + ���

p
�H

⌘

+
1

2

p
⇤H�(⇠)⇤H�⇤�� � 0 . (36)

Two di↵erent constraints can be deduced by setting ⇠ equals 0 and 1.

B. Perturbative Unitarity

At high energy the scattering amplitudes among the scalar fields from cubic couplings

will be suppressed by propagators. To deduce the perturbative unitarity constraints on the

parameters of the scalar potential, it is su�cient to focus on the quartic couplings.

The scattering amplitudes for the 2 ! 2 processes with the initial and final states belong

to one of the following states

⇢
hhp
2
,
G0G0

p
2

, G+G�, H0⇤
2 H0

2 , H
+H�,

�2�2p
2
,
G0

H
G0

Hp
2

, Gp

H
Gm

H
,
�3�3p

2
,�p�m

�
(37)

11

M1 ¼

0

BBBBBBBBBBBBBBBBBBBBBBBBB@

3λH λH 2ffiffi
2

p λH 2ffiffi
2

p λH 2ffiffi
2

p λ̃H 1
2 λHΦ

1
2 λHΦ

1ffiffi
2

p λ̃HΦ
1
2 λHΔ

1ffiffi
2

p λHΔ

λH 3λH 2ffiffi
2

p λH 2ffiffi
2

p λH 2ffiffi
2

p λ̃H 1
2 λHΦ

1
2 λHΦ

1ffiffi
2

p λ̃HΦ
1
2 λHΔ

1ffiffi
2

p λHΔ

2ffiffi
2

p λH 2ffiffi
2

p λH 4λH 2λ̃H 2λH 1ffiffi
2

p λHΦ
1ffiffi
2

p λHΦ λ̃HΦ
1ffiffi
2

p λHΔ λHΔ

2ffiffi
2

p λH 2ffiffi
2

p λH 2λ̃H 4λH 2λH 1ffiffi
2

p λ̃HΦ
1ffiffi
2

p λ̃HΦ λHΦ
1ffiffi
2

p λHΔ λHΔ

2ffiffi
2

p λ̃H 2ffiffi
2

p λ̃H 2λH 2λH 4λH 1ffiffi
2

p λ̃HΦ
1ffiffi
2

p λ̃HΦ λHΦ
1ffiffi
2

p λHΔ λHΔ

1
2 λHΦ

1
2 λHΦ

1ffiffi
2

p λHΦ
1ffiffi
2

p λ̃HΦ
1ffiffi
2

p λ̃HΦ 3λΦ λΦ 2ffiffi
2

p λΦ 1
2 λΦΔ

1ffiffi
2

p λΦΔ

1
2 λHΦ

1
2 λHΦ

1ffiffi
2

p λHΦ
1ffiffi
2

p λ̃HΦ
1ffiffi
2

p λ̃HΦ λΦ 3λΦ 2ffiffi
2

p λΦ 1
2 λΦΔ

1ffiffi
2

p λΦΔ

1ffiffi
2

p λ̃HΦ
1ffiffi
2

p λ̃HΦ λ̃HΦ λHΦ λHΦ
2ffiffi
2

p λΦ 2ffiffi
2

p λΦ 4λΦ 1ffiffi
2

p λΦΔ λΦΔ

1
2 λHΔ

1
2 λHΔ

1ffiffi
2

p λHΔ
1ffiffi
2

p λHΔ
1ffiffi
2

p λHΔ
1
2 λΦΔ

1
2 λΦΔ

1ffiffi
2

p λΦΔ 3λΔ 2ffiffi
2

p λΔ
1ffiffi
2

p λHΔ
1ffiffi
2

p λHΔ λHΔ λHΔ λHΔ
1ffiffi
2

p λΦΔ
1ffiffi
2

p λΦΔ λΦΔ
2ffiffi
2

p λΔ 4λΔ

1

CCCCCCCCCCCCCCCCCCCCCCCCCA

; ð42Þ

where the ði; jÞ element corresponds to the amplitude
between the states of the ith and jth element of the basis;
for instance, the (1,1) element represents the amplitude
of the process hh → hh. Here λ̃H ≡ λH − λ0H=2, λ̃HΦ ≡
λHΦ þ λ0HΦ.
There are 10 eigenvalues in total and seven of them are

given by:

λ1 ¼ 2λH; λ2 ¼ 2λΦ; λ3 ¼ 2λΔ; λ4;5 ¼ 2λH % λ0H

λ6;7 ¼ λ̃þH þ λΦ%
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λ02HΦþðλ̃þH − λΦÞ2

q
ð43Þ

where λ̃þH ≡ λH þ λ0H=2. The rest of the eigenvalues are the
three roots of the equation λ3 þ aλ2 þ bλþ c ¼ 0 with

a¼−5λΔ−6λΦ−10λH þλ0H;

b¼−6λ2HΔ−3λ2ΦΔþ5λΔð10λH −λ0H þ6λΦÞ
þ6λΦð10λH −λ0HÞ−8ðλHΦþλ0HΦ=2Þ2;

c¼ 36λΦλ2HΔ−24λHΔλΦΔðλHΦþλ0HΦ=2Þ
þ40λΔðλHΦþλ0HΦ=2Þ2þð3λ2ΦΔ−30λΔλΦÞð10λH −λ0HÞ;

which can be solved either numerically or analytically.
Since at very high center-of-mass energies all masses can
be ignored, one can take

ffiffiffi
s

p
→ ∞. The 2 ↔ 2 scatterings

among the scalars are then governed by the quartic
couplings. The amplitudes are all constants without energy
dependence and we can focus on the s-wave [17]. Unitarity
constraints then require all the 10 real eigenvalues λi of the
Hermitian M1 to satisfy [17–19,33]

jλiðM1Þj≤8π; ∀ i ¼ 1;…; 10: ð44Þ

There also exist processes involving different particles
in the initial and final states that can be divided into the
following groups:

(II) For the basis fhH0&
2 ; G0H0&

2 ; GþH−g as initial and
final states, we have the following scattering matrix

M2 ¼

0

BBB@

2λH 0
ffiffi
2

p

2 λ0H

0 2λH þ i
ffiffi
2

p

2 λ0Hffiffi
2

p

2 λ0H − i
ffiffi
2

p

2 λ0H 2λH

1

CCCA; ð45Þ

with eigenvalues 2λH and 2λH % λ0H .
(III) For the basis fhGþ; H0&

2 Hþ; G0Gþg, we find the
scattering matrix is the same as that in Eq. (45).

(IV)

MðhG0 ↔ hG0Þ ¼ MðGþHþ ↔ GþHþÞ ¼ 2λH:

ð46Þ

(V)

MðhHþ↔ hHþÞ¼MðG0Hþ↔G0HþÞ

¼MðH0&
2 Gþ ↔H0&

2 GþÞ¼ 2λ̃H:

ð47Þ

(VI)

MðGþH0
2 ↔ hHþ; G0HþÞ ¼ 1ffiffiffi

2
p ð1;−iÞλ0H: ð48Þ

(VII)

Mðϕ2G0
H ↔ ϕ2G0

HÞ ¼ Mðϕ2G
p
H ↔ ϕ2G

p
HÞ

¼ MðG0
HG

p
H ↔ G0

HG
p
HÞ

¼ 2λΦ: ð49Þ

(VIII)

Mðδ3Δp ↔ δ3ΔpÞ ¼ 2λΔ: ð50Þ
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Scalar Bosons Scattering Amplitudes

•There are also 12 other groups of  2 ➝ 2 processes 

•The perturbative unitarity constraints can be summarized as 

(IX) The scattering amplitudes of the following processes

hϕ2 ↔ hϕ2; hG0
H ↔ hG0

H;

G0ϕ2 ↔ G0ϕ2; G0G0
H ↔ G0G0

H;

Gþϕ2 ↔ Gþϕ2; GþG0
H ↔ GþG0

H; ð51Þ

and

H0$
2 Gp

H ↔ H0$
2 Gp

H; HþGp
H ↔ HþGp

H; ð52Þ

are all equal to λHΦ.
(X) The scattering amplitudes of the following processes

hGp
H ↔ hGp

H; G0Gp
H ↔ G0Gp

H;

GþGp
H ↔ GþGp

H; ð53Þ

and

H0$
2 ϕ2 ↔ H0$

2 ϕ2; H0$
2 G0

H ↔ H0$
2 G0

H;

Hþϕ2 ↔ Hþϕ2; HþG0
H ↔ HþG0

H; ð54Þ

are all equal to λ̃HΦ.
(XI)

MðGp
HG

− ↔ H−ϕ2Þ ¼
1ffiffiffi
2

p λ0HΦ; ð55Þ

MðGp
HH

0
2↔hϕ2Þ¼−MðGp

HH
0
2↔G0G0

HÞ¼
1

2
λ0HΦ;

ð56Þ

MðGp
HG

−↔H−G0
HÞ¼MðGp

HH
0
2↔hG0

HÞ
¼MðGp

HH
0
2↔G0ϕ2Þ

¼−
iffiffiffi
2

p λ0HΦ: ð57Þ

(XII) The scattering amplitudes of the following processes

hδ3 ↔ hδ3; hΔp ↔ hΔp;

G0δ3 ↔ G0δ3; G0Δp ↔ G0Δp;

Gþδ3 ↔ Gþδ3; GþΔp ↔ GþΔp;

H0$
2 δ3 ↔ H0$

2 δ3; H0$
2 Δp ↔ H0$

2 Δp;

Hþδ3 ↔ Hþδ3; HþΔp ↔ HþΔp; ð58Þ

are all equal to λHΔ.

(XIII) The scattering amplitudes of the following processes

ϕ2δ3 ↔ ϕ2δ3; ϕ2Δp ↔ ϕ2Δp;

G0
Hδ3 ↔ G0

Hδ3; G0
HΔp ↔ G0

HΔp;

Gp
Hδ3 ↔ Gp

Hδ3; Gp
HΔp ↔ Gp

HΔp; ð59Þ

are all equal to λΦΔ.
To summarize: For the above 13 groups of scattering

processes, perturbative unitarity requires the following
constraints

ðIÞ ⇒ jλiðM1Þj ≤ 8π; ∀ i ¼ ð1;…; 10Þ;
ðIIÞ–ðVIIIÞ ⇒ jλHj ≤ 4π; jλ0Hj ≤ 8

ffiffiffi
2

p
π; j2λH & λ0Hj ≤ 8π; jλΦj ≤ 4π; jλΔj ≤ 4π;

ðIXÞ; ðXÞ; ðXIÞ ⇒ jλHΦj ≤ 8π; jλ̃HΦj ¼ jλHΦ þ λ0HΦj ≤ 8π; jλ0HΦj ≤ 8
ffiffiffi
2

p
π;

ðXIIÞ; ðXIIIÞ ⇒ jλHΔj ≤ 8π; jλΦΔj ≤ 8π:

ð60Þ

C. Numerical results from vacuum stability
and perturbative unitarity

In this section, we will present numerical results from the
constraints of VS and PU. The VS constraints correspond
to Eqs. (32)–(34) in Sec. III A, i.e., the constraints on the
copositivity of the matrixQðξ; ηÞ. On the other hand, the
PU constraints can be found in Sec. III B and are summa-
rized in Eq. (60). For the two ratios ξ and η defined in
Eqs. (28) and (29), we will use the endpoint values ξ¼ 0, 1
and η ¼ −1, 0 in our analysis. In the following, λH;Φ;Δ and
λ0H are referred to as the diagonal couplings, and λHΦ;HΔ;ΦΔ
and λ0HΦ as the off-diagonal couplings.
In the upper- and lower-left panels of Fig. 1, the allowed

regions for diagonal couplings λΦ and λΔ versus off-
diagonal couplings λHΦ and λHΔ respectively are presented.

In fact, the allowed regions projected on to the λH-λHΦ
(λH-λHΔ) plane behave quite similarly to those of λΦ-λHΦ
(λΔ-λHΔ). The green and blue regions are the allowed
regions by VS and PU respectively, while only the red
regions are allowed when both VS and PU are considered.
Clearly, the constraints from PU [Eq. (60)] alone will
impose upper limits on all diagonal couplings λi, where
i ¼ ðH;Φ;ΔÞ, as shown by the blue regions for the cases of
λΦ and λΔ. On the other hand, the green regions from the
constraints of VS Eqs. (32)–(34) restrict the off-diagonal
λHΦ and λHΔ to be greater than −2 for the diagonal
λi < 0.1. In contrast, for larger λi, the windows for negative
values of λHΦ and λHΔ are widened.
The small wedgelike regions bounded by the green, blue

and red contours with negative λHΦ;HΔ and 0.1≲ λH;
λΦ ≲ 4 are allowed by either VS or PU alone. However
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as both the VS and PU constraints are imposed, this region
is excluded as the two constraints are in tension. We found
that this tension is mainly caused by a nontrivial combi-
nation of the copositive conditions in Eq. (33) and the
unitarity constraints in Eq. (60). Loosely speaking, if the
off-diagonal λij is negative, then larger λi and λj are needed
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FIG. 1. Allowed regions of the parameter space by the VS, PU and (VSþ PU) constraints projected onto the ðλΦ; λHΦÞ, ðλΔ; λHΔÞ,
ðλ0H; λHΦÞ and ðλ0H; λHΔÞ planes.
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−24 < λ′�H < 16

λ̃H(η) = λH + ηλ′�H ≥ 0



λH Δ is slightly more stringent than others because it has
relatively large coefficients inside the scattering matrixM1

in Eq. (42).
On the other hand, effects of the VS condition are hardly

visible in the parameter space except for the λH Φ − λ0H Φ
plane. The constraints originate from the parameter λ̃H ΦðξÞ.
Recall that λ̃H ΦðξÞ≡ λH Φ þ λ0H Φξ with 0 ≤ ξ ≤ 1. From

the first inequality of Eq. (33) λ̃H ΦðξÞ ≥ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃H ðηÞλΦ

q
, it

implies λH Φ and λ0H Φ cannot be too negative at the same
time, leading to the blank bottom-left corner in the bottom-
left panel of Fig. 2. As already explained in Fig. 1, when
we combine both constraints from VS and PU, the allowed
region is further shrunk due to the tension between the
copositive conditions Eq. (33) and the unitarity limits
Eq. (60).

IV. HIGGS PHENOMENOLOGY

In this section, we will consider the phenomenological
constraints from the Higgs physics at the LHC.

A. Higgs diphoton decay

In G2HDM, as explained above the 125 GeV Higgs
boson h1 is a linear combination of h, ϕ2 and δ3:

h1 ¼ O 11hþ O 21ϕ2 þ O 31δ3; ð61Þ

where O ij are the elements of the orthogonal matrix O that
diagonalizes the mass matrix M2

0 displayed in Eq. (18).
The mixing has an impact on both the ggH production and
Higgs decay branching ratio into two photons.

FIG. 2. Allowed regions of the parameter space by the VS, PU and (VSþ PU) constraints projected onto the planes of ðλH Φ; λH ΔÞ,
ðλ0H Φ; λH ΦÞ, ðλH Φ; λΦΔÞ and ðλ0H Φ; λH ΔÞ.

ARHRIB, HUANG, RAMOS, TSAI, and YUAN PHYS. REV. D 98, 095006 (2018)

095006-12

VS not doing much!

λ̃HΦ(ξ) = λHΦ + ξλ′�HΦ can′�t be too negative!



Higgs Phenomenology 

λH Δ is slightly more stringent than others because it has
relatively large coefficients inside the scattering matrixM1

in Eq. (42).
On the other hand, effects of the VS condition are hardly

visible in the parameter space except for the λH Φ − λ0H Φ
plane. The constraints originate from the parameter λ̃H ΦðξÞ.
Recall that λ̃H ΦðξÞ≡ λH Φ þ λ0H Φξ with 0 ≤ ξ ≤ 1. From

the first inequality of Eq. (33) λ̃H ΦðξÞ ≥ −2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃H ðηÞλΦ

q
, it

implies λH Φ and λ0H Φ cannot be too negative at the same
time, leading to the blank bottom-left corner in the bottom-
left panel of Fig. 2. As already explained in Fig. 1, when
we combine both constraints from VS and PU, the allowed
region is further shrunk due to the tension between the
copositive conditions Eq. (33) and the unitarity limits
Eq. (60).

IV. HIGGS PHENOMENOLOGY

In this section, we will consider the phenomenological
constraints from the Higgs physics at the LHC.

A. Higgs diphoton decay

In G2HDM, as explained above the 125 GeV Higgs
boson h1 is a linear combination of h, ϕ2 and δ3:

h1 ¼ O 11hþ O 21ϕ2 þ O 31δ3; ð61Þ

where O ij are the elements of the orthogonal matrix O that
diagonalizes the mass matrix M2

0 displayed in Eq. (18).
The mixing has an impact on both the ggH production and
Higgs decay branching ratio into two photons.

FIG. 2. Allowed regions of the parameter space by the VS, PU and (VSþ PU) constraints projected onto the planes of ðλH Φ; λH ΔÞ,
ðλ0H Φ; λH ΦÞ, ðλH Φ; λΦΔÞ and ðλ0H Φ; λH ΔÞ.

ARHRIB, HUANG, RAMOS, TSAI, and YUAN PHYS. REV. D 98, 095006 (2018)

095006-12

Due to the narrow Higgs decay width, the Higgs
production will be dominated by the resonance region
and thus the cross section σðpp → h1 → γγÞ can be well
approximated by [34]

σðgg → h1 → γγÞ ¼ π2

8sm h1Γh1
fgg

!
m h1ffiffiffi
s

p
#

× Γðh1 → ggÞΓðh1 → γγÞ; ð62Þ

with the center of mass energy
ffiffiffi
s

p
¼ 13 TeV and the

integral of the parton (gluon in this case) distribution
function product

fggð
ffiffiffi
y

p Þ ¼
Z

1

y

dx
x
gðx; μ2Þg

!
y
x
; μ2

#
; ð63Þ

evaluated at the scale of μ ¼ m h1 ¼ 125 GeV. The corre-
sponding signal strength for ggH production is

μγγggH ¼ ΓSM
h

Γh1

Γðh1 → ggÞΓðh1 → γγÞ
ΓSMðh → ggÞΓSMðh → γγÞ

; ð64Þ

where the superscript SM refers to the SM Higgs boson h.
In G2HDM, Γðh1 → ggÞ receives additional contributions
from the new colored heavy fermions while Γðh1 → γγÞ
has extra contributions from both the new charged heavy
fermions and the charged Higgs H$. As a result, one has
[13,35–38]

Γðh1 → γγÞ ¼
GFα2m 3

h1
O2

11

128
ffiffiffi
2

p
π3

$$$$A1ðτW$Þ þ
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f

NCQ2
fA1=2ðτfÞ
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λ̃Hv2

m 2
H$

A0ðτH$Þ

þ O21

O11

v
vΦ

X

F

NCQ2
FA1=2ðτFÞ

$$$$
2

; ð65Þ

with NC being the number of color and

Ch ¼ 1þ O21

O11

ðλHΦ þ λ0HΦÞvΦ
2λ̃Hv

−
O31

O11

2λHΔvΔ þMHΔ

4λ̃Hv
;

ð66Þ

where λ̃H ¼ λH − λ0H=2. The symbol f refers to the SM
fermions while F denotes the heavy fermions. The form
factors for spins 0, 1

2 and 1 particles are given by

A0ðτÞ ¼ −½τ − fðτÞ'τ−2;
A1=2ðτÞ ¼ 2½τ þ ðτ − 1ÞfðτÞ'τ−2;
A1ðτÞ ¼ −½2τ2 þ 3τ þ 3ð2τ − 1ÞfðτÞ'τ−2; ð67Þ

with the function fðτÞ defined as

fðτÞ ¼

8
<

:

arcsin2
ffiffiffi
τ

p
; for τ ≤ 1;

− 1
4

h
log 1þ

ffiffiffiffiffiffiffiffiffi
1−τ−1

p

1−
ffiffiffiffiffiffiffiffiffi
1−τ−1

p − iπ
i
2

; for τ > 1:
ð68Þ

The parameters τi ¼ m 2
h1
=4m 2

i with i ¼ H$, f, F, W$ are
related to the corresponding masses of the particles in the
loops. Other symbols not defined in Eq. (65) are self-
explanatory. As is well known in the SM, even if the W
gauge boson or top quark becomes infinitely heavy
(τi → 0), they do not decouple in the triangle loop and
have still finite contributions due to A1=2ð0Þ ¼ 4=3 and
A1ð0Þ ¼ −7. Moreover, hSM → γγ is dominated by theW$

loop contribution, while the top quark contribution is
subdominant and has destructive interference with that
of W$. In G2HDM, the extra contributions from charged
Higgs and new heavy charged fermions to the diphoton
channel can be either constructive or destructive interfer-
ences with the SM ones, depending on the signs of Ch and
O21=O11 respectively. However, due to an extra factor of
1=m 2

H$ in front of A0ðτH$Þ and the small ratio v=vΦ in front
of A1=2ðτFÞ in Eq. (65), both the contributions from the very
heavy charged Higgs and extra fermions are not significant
in the diphoton channel. They are effectively decoupled in
the large mass limit in G2HDM.
On the other hand, the partial decay width of h1 into two

gluons mediated by the SM quarks and the new colored
fermions is [35–37]

Γðh1 → ggÞ ¼
α2sm 3

h1
O2

11

72v2π3

$$$$
X

f

3

4
A1=2ðτfÞ

þ O21

O11

v
vΦ

X
F

3

4
A1=2ðτFÞ

$$$$
2

: ð69Þ

Depending on the sign of O21=O11, the contributions
from the new heavy quarks in G2HDM can increase or
decrease the branching fraction. Note also the suppression
factor of the small ratio v=vΦ for the contributions from
new heavy quarks.
Finally, the SM prediction for the branching ratios of

h → gg and h → γγ can be easily obtained from the previous
formulas by setting O11 ¼ 1 and O21 ¼ O31 ¼ 0 and
neglecting the contributions from the new heavy fermions
and H$.

B. Numerical results from Higgs physics

In this subsection, wewill discuss constraints on the scalar
quartic couplings λs from Higgs physics only (marked in
orange) and from Higgs physics (HP) plus the aforemen-
tioned theoretical conditions (marked in magenta). We also
colored in red the theoretical constraints alone as before.
Here, we include the HP experimental constraints in the 2σ
range from the ATLAS experiment [39]:

(i) Higgs mass m h ¼ 125.09$ 0.24 GeV, and
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i with i ¼ H$, f, F, W$ are
related to the corresponding masses of the particles in the
loops. Other symbols not defined in Eq. (65) are self-
explanatory. As is well known in the SM, even if the W
gauge boson or top quark becomes infinitely heavy
(τi → 0), they do not decouple in the triangle loop and
have still finite contributions due to A1=2ð0Þ ¼ 4=3 and
A1ð0Þ ¼ −7. Moreover, hSM → γγ is dominated by theW$

loop contribution, while the top quark contribution is
subdominant and has destructive interference with that
of W$. In G2HDM, the extra contributions from charged
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ences with the SM ones, depending on the signs of Ch and
O21=O11 respectively. However, due to an extra factor of
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H$ in front of A0ðτH$Þ and the small ratio v=vΦ in front
of A1=2ðτFÞ in Eq. (65), both the contributions from the very
heavy charged Higgs and extra fermions are not significant
in the diphoton channel. They are effectively decoupled in
the large mass limit in G2HDM.
On the other hand, the partial decay width of h1 into two
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Depending on the sign of O21=O11, the contributions
from the new heavy quarks in G2HDM can increase or
decrease the branching fraction. Note also the suppression
factor of the small ratio v=vΦ for the contributions from
new heavy quarks.
Finally, the SM prediction for the branching ratios of

h → gg and h → γγ can be easily obtained from the previous
formulas by setting O11 ¼ 1 and O21 ¼ O31 ¼ 0 and
neglecting the contributions from the new heavy fermions
and H$.

B. Numerical results from Higgs physics

In this subsection, wewill discuss constraints on the scalar
quartic couplings λs from Higgs physics only (marked in
orange) and from Higgs physics (HP) plus the aforemen-
tioned theoretical conditions (marked in magenta). We also
colored in red the theoretical constraints alone as before.
Here, we include the HP experimental constraints in the 2σ
range from the ATLAS experiment [39]:
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factor of the small ratio v=vΦ for the contributions from
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have still finite contributions due to A1=2ð0Þ ¼ 4=3 and
A1ð0Þ ¼ −7. Moreover, hSM → γγ is dominated by theW$

loop contribution, while the top quark contribution is
subdominant and has destructive interference with that
of W$. In G2HDM, the extra contributions from charged
Higgs and new heavy charged fermions to the diphoton
channel can be either constructive or destructive interfer-
ences with the SM ones, depending on the signs of Ch and
O21=O11 respectively. However, due to an extra factor of
1=m 2

H$ in front of A0ðτH$Þ and the small ratio v=vΦ in front
of A1=2ðτFÞ in Eq. (65), both the contributions from the very
heavy charged Higgs and extra fermions are not significant
in the diphoton channel. They are effectively decoupled in
the large mass limit in G2HDM.
On the other hand, the partial decay width of h1 into two

gluons mediated by the SM quarks and the new colored
fermions is [35–37]

Γðh1 → ggÞ ¼
α2sm 3

h1
O2

11

72v2π3

$$$$
X

f

3

4
A1=2ðτfÞ

þ O21

O11

v
vΦ

X
F

3

4
A1=2ðτFÞ

$$$$
2

: ð69Þ

Depending on the sign of O21=O11, the contributions
from the new heavy quarks in G2HDM can increase or
decrease the branching fraction. Note also the suppression
factor of the small ratio v=vΦ for the contributions from
new heavy quarks.
Finally, the SM prediction for the branching ratios of

h → gg and h → γγ can be easily obtained from the previous
formulas by setting O11 ¼ 1 and O21 ¼ O31 ¼ 0 and
neglecting the contributions from the new heavy fermions
and H$.

B. Numerical results from Higgs physics

In this subsection, wewill discuss constraints on the scalar
quartic couplings λs from Higgs physics only (marked in
orange) and from Higgs physics (HP) plus the aforemen-
tioned theoretical conditions (marked in magenta). We also
colored in red the theoretical constraints alone as before.
Here, we include the HP experimental constraints in the 2σ
range from the ATLAS experiment [39]:

(i) Higgs mass m h ¼ 125.09$ 0.24 GeV, and
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FIG. 3. Allowed regions of the parameter space by the HP, (VSþ PU) and (VSþ PUþ HP) constraints projected onto the planes of
ðλH ; λH ΦÞ, ðλH ; λH ΔÞ, ðλΦ; λH ΦÞ, ðλ0H ; λH ΦÞ, ðλ0H ; λH ΔÞ and ðλΔ; λH ΔÞ.
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work. Although these two new couplings do not alter the
minimization conditions of the scalar potential, their
impacts on the scalar mass spectrum and effects on the
VS, PU and HP constraints are analyzed in detail. We have
recomputed the diphoton signal strength for the 125 GeV
Higgs. We have included the contributions of the new
heavy fermions in G2HDM and demonstrated that their
effects can be significant in the diphoton channel. The
charged Higgs contribution is also found to be significant if
its mass is in the range of 100 to 300 GeV. Overall the
diphoton signal strength is found to be ≲1 in G2HDM. In
particular G2HDM can naturally accommodate the current
ATLAS central value of 0.81 for the diphoton signal

strength from gluon-gluon fusion production. We note that
the corresponding central value from CMS is 1.10 [43]
which is not favorable in G2HDM with the present
numerical setup in this work. However we are quoting
the LHC Run II data from ATLAS and CMS in our
analysis, while the combined results from both experiments
are not available yet.
In Fig. 9, we summarize the allowed regions of the

multidimensional parameter space projected on all the
two-dimensional planes comprised of the four diagonal
couplings λH;Φ;Δ, λ0H and the four off-diagonal couplings
λHΦ;HΔ;ΦΔ, λ0HΦ. The upper red triangular block corresponds
to (VSþ PU) constraints,while the lowermagenta triangular

FIG. 9. A summary of the parameter space allowed by the theoretical and phenomenological constraints. The red regions show the
results from the theoretical constraints (VSþ PU) of Sec. III. The magenta regions are constrained by Higgs physics as well as the
theoretical constraints (HPþ VSþ PU), as discussed in Sec. IV.
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• Double Higgs Production

Phenomenology

Ref: Chuan-Ren Chen, Yu-Xiang Lin, Van Que Tran, TCY, arXiv:1810.04837 



The$Higgs$self$coupling$is$a$key$parameter$that$can$help$us$
reconstruc-ng$the$shape$of$the$Higgs$poten-al.$$
�$How$EWSB$really$happens$$
�$Whether$there$is$an$extended$Higgs$sector$

[Slides from VQ Tran]



However,$it$is$a$challenging$measurement$for$the$SM$due$to$its$small$
produc-on$cross$sec-on$

[Slides from VQ Tran]



1.  Modifica-on$in$the$quark$Yukawa$
couplings;$$

2.  Modifica-on$in$the$trilinear$Higgs$self4
coupling;$$

3.  New$colored$par-cles$running$in$triangle$
and$box$loops;$

4.  Existence$of$new$heavy$scalars$decaying$
into$Higgs$pairs.$$

  (1)—(3)$belong$to$the$non4resonance$
effect,$while$(4)$belongs$to$the$resonance$
effect.$

G2HDM$has$all$
these$ingredients!$

BSM physics can easily affect the Higgs pair 
production cross section through: 

[Slides from VQ Tran]



Double Higgs Production in G2HDM

loop and heavy scalars h2, h3 as mediators. In addition, the 125 GeV SM-like Higgs

boson h1 is a mixture of h, �2 and �3, and this mixing has impacts on both modifi-

cations in the quark Yukawa couplings and trilinear Higgs self-coupling. Feynman

diagrams for production of a pair of h1s in G2HDM are shown in Fig. 2. The

g

g

t, b, qH
i h1

h1

(a)

t, b, qH
i

h1

h1

hi

g

g

(b)

FIG. 2: Feynman diagrams for non-resonant (a) and resonant (b) production of a pair

of 125 GeV Higgs bosons in G2HDM. Note that qi = u, d, c, s, t, b and

hi = h1, h2, h3.
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relevant couplings for production of a pair of h1 in G2HDM are listed as follows

gqqhi
= OH

1i

mq

v
, (19)
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where gqqhi
, gqHqHhi

, gh1h1h1 and gh2h1h1 are the quark Yukawa couplings, heavy

quark Yukawa couplings, trilinear h1 self-coupling and coupling between heavier

scalar h2 and two h1s, respectively. One can see that the SM quark Yukawa

couplings gqqh1 are now smaller by a factor of the mixing element OH

11 as compared

to the SM values. Furthermore, the Higgs boson self-couplings gh1h1h1 and gh2h1h1

in G2HDM are comprised of many new parameters which might give us a chance to

study the effects of these parameters in double h1 production. In what follows, we

will ignore the heaviest scalar h3 in our analysis due to its negligible contribution

to the double h1 production cross section.

The differential cross section for double h1 production from gluon fusion in

12



Parameter Scan
• All the lambdas satisfy PU+VS+HP constraints discussed 

before.

• For the  double Higgs phenomenology, we will scan  vary their ranges as follows

0.1 GeV < v� < 4 TeV , (27)

30 TeV < v� < 100 TeV , (28)

�3 TeV < MH� < 3 TeV , (29)

0 < M�� < 15 GeV . (30)

The SM VEV v is fixed at 246 GeV. First, we scan all the parameters with the set-

up ranges defined above and require them to pass through all the theoretical and

Higgs phenomenological constraints presented in [13]. The constraints from direct

Z 0 resonance search at the latest ATLAS and CMS 13 TeV results [26–29] have

been taken into account in our scanning. Furthermore, the dark matter candidate

D is set to be heavier than half of the Higgs boson mass so that the invisible

mode of h1 ! DD is not kinematically allowed. The masses of heavy fermions are

assumed to be degenerate and set to be 3 TeV. Finally, we focus on the situation

mh2 > 2mh1 to allow h2 decays on shell into h1h1.

In Fig. 3, we show the scatter plots of the ratio of production cross sections for

a pair of 125 GeV Higgs bosons between the G2HDM and SM on the planes of

(�h1h1h1 , BR(h2 ! h1h1)) (Fig. 3a), (�h1h1h1 , mh2) (Fig. 3b), (�h1h1h1 , qqh1) (Fig.

3c) and (�h1h1h1 , qqh2) (Fig. 3d). The color palette on the right of each of the plots

in Fig. 3 indicates the signal strength of the double h1 Higgs boson production.

From these four plots in Fig. 3, one can see that the trilinear self-coupling of

Higgs boson in G2HDM can significantly deviate from SM value, it can even flips

its sign to be negative. From Fig. 3a, one observes that the branching ratio of the

heavier scalar h2 decay into a pair of h1s can vary from 0 up to 100%. As expected,

when |�h1h1h1 | and BR(h2 ! h1h1) are getting larger, the triangle diagram will

become the dominant channel and enhance the production cross section. Note

that when �h1h1h1 becomes negative, there is a constructive interference between

the two types of box and triangle Feynman diagrams in Fig. 2. However when
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• Constraints from direct Zʹ resonance search at ATLAS and CMS.

• All masses of  the heavy fermions are set to be 3 TeV. 

h2 → h1h1
h1 ↛ DD (Kinematically forbidden)

• Note: Effects from the heaviest dark Higgs h3 are neglected.

(On-shell decay)



(a) (b)

(c) (d)

FIG. 3: The scatter plots of relevant parameters to Higgs boson pair production

without the experimental constraints from DM relic density and direct searches. The

color palette indicates the ratio of double Higgs boson production cross sections

between G2HDM and SM. Note that �h1h1h1 = gh1h1h1/g
SM
hhh

with g
SM
hhh

= 6�SMv,

qqh1 = qqqh1/q
SM
qqh

and qqh2 = qqqh2/q
SM
qqh

with q
SM
qqh

= mq/v.

one of the channels, either the box or triangle Feynman diagram, becomes the

dominant contribution to the total production cross section, the interference effect

is not significant anymore. It is also shown in Fig. 3b that for a heavier h2 mass

the cross section of double h1 production will be much smaller. Furthermore, due

15

−29 ≤ λh1h1h1
≡

gh1h1h1

λSM
≤ 32

Negative 

Negative values provide constructive interferences!



larger or DM relic density becomes smaller. The second correlation, shown in Fig.

4b, is due to the fact that the DM-nucleon cross section has about half its contri-

butions coming from the one loop heavy quarks (mainly top quark) in the triangle

diagram which also appear in the double Higgs boson production process.

(a) (b)

FIG. 4: The scatter plots for the ratio of production cross sections for a pair of 125

GeV Higgs bosons between G2HDM and SM on the planes of dark matter mass and a)

relic density of DM, b) spin-independent cross section of DM and nucleon. The lime

(yellow) band corresponds to 1� (3�) range of the PLANCK’s relic density

measurement of DM [31]. The orange and black lines represent the upper limit on

spin-independent cross section of DM and nucleon from PandaX-II Experiment [32] and

XENON1T [33], respectively.

The DM relic density and direct searches put stringent constraints on the pa-

rameter space of G2HDM. As shown in Fig. 4a, the PLANCK’s relic density

measurement constrains the parameter space in a small 3� band, while from Fig.

4b one can also see that the DM direct search constraints cut off almost all the

parameter space which significantly enhances the cross section of double Higgs bo-

son production. Moreover, when both relic density and direct search constraints

are imposed, only about 2% of the data points survived.
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• Relic Density • Direct Detection

DD* → hi → h1h1 gg → top loop → h1

Correlations with Dark Matter Physics

Planck



(a) (b)

(c) (d)

FIG. 5: Same as Fig. 3 but after taking into account the experimental constraints from

DM relic density from PLANCK [31] and direct searches from PandaX-II

Experiment [32] and XENON1T [33].

Same as Fig. 3, we show in Fig. 5 the scatter plots of relevant parameters

to Higgs boson pair production after taking into account the constraints from

DM relic density and direct searches. The allowed points in the parameter space

are selected within 3� of the PLANCK’s relic density measurement of DM [31]

and below the upper limits of the DM direct detection searches from PandaX-

II experiments [32] and XENON1T [33]. Under these combined constraints of
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−1 ≤ λh1h1h1
≡

gh1h1h1

λSM
≤ 1.3

Only 2% data remains after relic density and direct detection constraints are imposed!



Summary

• We have constructed a model with the 2 Higgs doublets 
embedded into a 2 dim spinor representation of  a new gauge 
group SU(2)H. 

• Spontaneous symmetry breaking of  SU(2)H by a triplet triggers the 
breaking of  the SM SU(2)L. 

• An inert doublet can be emerged as DM candidate due to local 
gauge invariance rather than the ad hoc Z2 discrete symmetry, 
which is more satisfying! 

• Constraints from (PU+VS+HP) on the scalar potential have been 
carefully studied. 

• Double Higgs production at the LHC is computed with 
constraints from (PU+VS+HP+DM) taken into account. A factor 
of  10 enhancement can be achieved compared with SM. 

• Detailed studies for γγbb and bbbb final states from double Higgs 
production had been carried out by V. Q. Tran.



Outlook

• DM - relic density, direct/indirect detection, collider (in preparation) 

• Confronts electroweak precision data (in preparation) 

• Dark Zʹ & Zʹʹ, dark Higgs phenomenology 

• Charged Higgs phenomenology 

• Can one drop the triplet? 

• Can Wʹ{p,m} and         be viable DM? 

• Long-lived particles (LLPs) in G2HDM? 

• Rare Decays (Loop processes) 
- FCNH decay e.g. h→µτ, etc 
- μ→eγ (MEG), μ-e conversion (Mu2E, COMET), μ→eee, (g-2)μ, 
… 

• etc.

νH



Thank you for 
your attention!

Happy New Year


